World Scientific Publishing Co., 2008. — x, 834 p. — ISBN 981-283-385-4, 978-981-283-385-3. This unique volume presents a collection of the extensive journal publications written by Kai Lai Chung over a span of 70-odd years. It is produced to celebrate his 90th birthday. The selection is only a subset of the many contributions that he has made throughout his prolific career....
N.-Y.: Atlantis Press, 2015. - 149p. This book contains entirely new results, not to be found elsewhere. Furthermore, additional results scattered elsewhere in the literature are clearly presented. Several well-known distributions such as Weibull distributions, exponentiated Burr type XII distributions and exponentiated exponential distributions and their properties are...
Cambridge: Cambridge University Press, 1990. — 299 p. The classical subjects of geometric probability and integral geometry, and the more modern one of stochastic geometry, are developed here in a novel way to provide a framework in which they can be studied. The author focuses on factorization properties of measures and probabilities implied by the assumption of their...
Cambridge: Cambridge University Press, 2018.- xvi, 429 p. This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary...
John Wiley & Sons, 1998. — 312 p. — ISBN: 0471081086, 978-0471081081. The first and only comprehensive guide to modern record theory and its applications. Although it is often thought of as a special topic in order statistics, records form a unique area, independent of the study of sample extremes. Interest in records has increased steadily over the years since Chandler...
New York: Chapman&Hall, 1999. - 422p.
Stochastic geometry involves the study of random geometric structures, and blends geometric, probabilistic, and statistical methods to provide powerful techniques for modeling and analysis. Recent developments in computational statistical analysis, particularly Markov chain Monte Carlo, have enormously extended the range of feasible...
Richard F. Bass, 2001. — 47 pages.
Basic notions.
Independence.
Convergence.
Weak law of large numbers.
Techniques related to almost sure convergence.
Strong law of large numbers.
Uniform integrability.
Complements to the SLLN.
Conditional expectation.
Stopping times.
Optional stopping.
Doob’s inequalities.
Martingale convergence theorems.
Applications of...
China Machine Press, 2000. — 460 pages.
Bean's "Probability: The Science of Uncertainty with Applications to Investments, Insurance, and Engineering" is an 'applied' book that will be of interest to instructors teaching probability in mathematics departments of operations research, statistics, actuarial science, management science, and decision science. Comprehensive, easy to...
2nd edition. — Athena Scientific, 2008. — 528 p. — ISBN: 188652923X An intuitive, yet precise introduction to probability theory, stochastic processes, and probabilistic models used in science, engineering, economics, and related fields. The 2nd edition is a substantial revision of the 1st edition, involving a reorganization of old material and the addition of new material. The...
Orlando: Academic Press, 1986. — 223 p. The algebraic properties and utility of deterministic algebraic polynomials are well known. Similarly, the properties of orthogonal and trigonometric polynomials are also well understood, and many books treating these deterministic theories are available. But this book is the first of its kind in presenting a fairly rigorous and...
John Wiley and Sons, 1968.
Weak convergence in metric spaces.
The Space of Continuous Functions.
The Space of Functions that are right-continuous and have a limit at left.
Dependent variables.
Appendix I. Metric Spaces.
Appendix II. Miscellany.
Appendix III. Theoretical Complements.
3rd Edition. — Wiley-Interscience, 1995. — 608 p.
Now in its new third edition, Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Retaining the unique approach of the previous editions, this text interweaves material on probability and measure, so that probability problems generate an...
Addison-Wesley, 1992. — 421 p. — (Classics in Applied Mathematics, 7). — ISBN: 0-89871-296-3. Well known for the clear, inductive nature of its exposition, this reprint volume is an excellent introduction to mathematical probability theory. It may be used as a graduate-level text in one- or two-semester courses in probability for students who are familiar with basic measure...
Springer, 1988. — 273 p. — ISBN: 0387967354, 9780387967356
The author, the founder of the Greek Statistical Institute, has based this book on the two volumes of his Greek edition which has been used by over ten thousand students during the past fifteen years. It can serve as a companion text for an introductory or intermediate level probability course. Those will benefit most...
N.-Y.: Springer, 2014. - 776p. This book provides a contemporary and lively postcalculus introduction to the subject of probability. The exposition reflects a desirable balance between fundamental theory and many applications involving a broad range of real problem scenarios. It is intended to appeal to a wide audience, including mathematics and statistics majors, prospective...
Michigan Publishing, 2021. — 709 p. — ISBN 978-1-60785-746-4. An undergraduate textbook on probability for Data Science. This book is an introductory textbook in undergraduate probability. It has a mission: to spell out the motivation, intuition, and implication of the probabilistic tools we use in science and engineering. From over half a decade of teaching the course, I have...
Hoboken: Wiley-Interscience, 2005. - 433p. A unique approach illustrating discrete distribution theory through combinatorial methods This book provides a unique approach by presenting combinatorial methods in tandem with discrete distribution theory. This method, particular to discreteness, allows readers to gain a deeper understanding of theory by using applications to solve...
Academic Press, 2001, Third Edition, 419 p. Distribution function Measure theory Random variable. Expectation. Independence Convergence concepts Law of large numbers. Random series Characteristic function Central limit theorem and its ramifications Random walk Conditioning. Markov property. Martingale Supplement: Measure and Integral General Bibliography
New York - Chichester - Brisbane - Toronto - Singapore: John Wiley & Sons, Inc., 1991. — 192 р. This is a theoretical analysis of a probabilistic approach to solving packing or partitioning algorithms. These generally require the partitioning of a set of nonnegative numbers so that the sums of the elements in the blocks of the partition satisfy some given property. Departs from...
Methuen, 1962. — 142 p. Renewal theory began as the study of some particular probability problems connected with the failure and replacement of components, such as electric light bulbs. Later it became clear that essentially the same problems arise also in connexion with many other applications of probability theory and moreover that the fundamental mathematical theorems of...
Cambridge University Press, 2004. — 129 p. The Mathematical Theory of Probability has lately become of Growing importance owing to the great variety of its applications, and also to its purely mathematical interest. The subject of this tract is the development of the purely mathematical side of the theory, without any reference to the applications. The axiomatic foundations of...
John Wiley & Sons, 1990. — 375 p. Foreword: It is an honour to be asked to write a foreword to this book, for I believe that it is a book destined ultimately to be recognized as one of the great books of the world. The subject of probability is over two hundred years old and for the whole period of its existence there has been dispute about its meaning. At one time these...
Basel: Birkhäuser, 2000. — 477 p. In this book, a beautiful interplay between probability theory (Markov processes, martingale theory) on the one hand and operator and spectral theory on the other yields a uniform treatment of several kinds of Hamiltonians such as the Laplace operator, relativistic Hamiltonian, Laplace-Beltrami operator, and generators of Ornstein-Uhlenbeck...
Wiley-Interscience, 1997. — 409 p. Applies the well-developed tools of the theory of weak convergenceof probability measures to large deviation analysis--a consistentnew approach The theory of large deviations, one of the most dynamic topics inprobability today, studies rare events in stochastic systems. Thenonlinear nature of the theory contributes both to its richness...
Duxbury Press, 2004. — 512 Pages.
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the...
Brooks/Cole, 2005. — 497 Pages.
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the...
New York: Chapman and Hall/CRC, 1998. - 178p.
recent research-have many applications in physics, economics, and statistics. The main results are presented in such a fashion that they can be understood and used by readers whose knowledge of probability incorporates little more than basic probability theory and stochastic processes.
3rd ed. — Wiley, 1968. — 528 p. Major changes in this edition include the substitution of probabilistic arguments for combinatorial artifices, and the addition of new sections on branching processes, Markov chains, and the De Moivre-Laplace theorem. Introduction: The Nature of Probability Theory. The Sample Space. Elements of Combinatorial Analysis. Fluctuations in Coin Tossing...
Wiley, 1971. — 704 pages.
At the time the first volume of this book was written the interest in probability was not yet widespread. Teaching was on a very limited scale and topics such as Markov chains, which are now extensively used in several disciplines, were highly specialized chapters of pure mathematics. The first volume may therefore be likened to an all-purpose travel...
Cambridge University Press, 2008. — 216 p. What is this book about, and who is it written for? To start with the first question, this book introduces a subject placed at the interface between mathematics, physics, and information theory of systems. In doing so, it is not intended to be a comprehensive monograph and collect all the mathematical results available in the...
Boston: Birkhäuser, 2000. — 490 p. Moment Bounds for Self-Normalized Martingales. Exponential and Moment Inequalities for U-Statistics. A Multiplicative Inequality for Concentration Functions of n-Fold Convolutions. On Exact Maximal Khinchine Inequalities. Strong Exponential Integrability of Martingales with Increments Bounded by a Sequence of Numbers. On Uniform Laws of Large...
Transl. from Russian by George Yankovsky. — М.: Mir Publishers, 1978. — 130 p. This classic book is intended to be the first introduction to probability and statistics written with an emphasis on the analytic approach to the problems discussed. Topics include the axiomatic setup of probability theory, polynomial distribution, finite Markov chains, distribution functions and...
Wiley-Interscience, 1995. — 517 p. — ISBN: 0471305022, 978-0471305026. This book was initially undertaken in 1987 in Moscow. We have found that the majority of books on mathematical models of reliability are very specialized: essentially none of them contains a spectrum of reliability problems. At the same time, many of them are overloaded with mathematics which may be...
Springer, 1997. - 267 pages. Counting. Independence and conditinal probability. Random variables. More about random variables. Approximating probabilities. Generating functions. Random walks. Markov Chains.
Oxford, Oxford University Press, 2001. — 448 p. Сборник задач по теории вероятностей с решениями. Дополняет учебник тех же авторов по теории вероятностей и случайным процессам. Для преподавателей и для самостоятельного изучения.
Birkhäuser, 1991. — 428 pp. The past decade has seen a resurgence of interest in the study of the asymptotic behavior of sums formed from an independent sequence of random variables. In particular, recent attention has focused on the interaction of the extreme summands with, and their influence upon, the sum. As observed by many authors, the limit theory for sums can be...
Addison Wesley, 1991. - 344 pages. This is a superb text for all current and future practitioners of statistics. Richard Hamming wrote this book with a clear pedagogical vision of how to approach the subject in a clear yet nontrivial manner. Particularly clear and deep coverage of generating functions cannot be found in any other book ever written. Offering accessible and...
Dover Publications, 2010. — 369 p. This introduction to probability theory transforms a highly abstract subject into a series of coherent concepts. Its extensive discussions and clear examples, written in plain language, expose students to the rules and methods of probability. Suitable for an introductory probability course, this volume requires abstract and conceptual thinking...
Providence: American Mathematical Society, 2006. — 381 p. The book treats free probability theory, which has been extensively developed since the early 1980s. The emphasis is put on entropy and the random matrix model approach. The volume is a unique presentation demonstrating the extensive interrelation between the topics. Wigner's theorem and its broad generalizations, such as...
Springer, 2004. — 442 p. — ISBN: 3-540-40652-2.
Non-uniform random variate generation is an established research area in the intersection of mathematics, statistics and computer science. Although random variate generation with popular standard distributions have become part of every course on discrete event simulation and on Monte Carlo methods the recent concept of universal...
Springer, 1995. — 256 p. Cars, Goats, and Sample Spaces How to Count: Birthdays and Lotteries Conditional Probability: From Kings to Prisoners The Formula of Thomas Bayes and Other Matters The Idea of Independence, with Applications A Little Bit About Games Random Variables, Expectations, and More About Games Baseball Cards, The Law of Large Numbers, and Bad News for Gamblers...
Berlin: Springer, 2004. - 227p.
This introduction to Probability Theory can be used, at the beginning graduate level, for a one-semester course on Probability Theory or for self-direction without benefit of a formal course; the measure theory needed is developed in the text. It will also be useful for students and teachers in related areas such as Finance Theory (Economics),...
Cambridge University Press, 2003. For many years there has been controversy over "frequentist" versus "Bayesian" methods of inference, in which the writer has been an outspoken partisan on the Bayesian side. The record of this up to 1981 is given in an earlier book (Jaynes, 1983). In these old works there was a strong tendency, on both sides, to argue on the level of philosophy...
2nd ed. — Oxford: Clarendon Press, 1948. — 416 p. This textbook is an introduction to probability theory using measure theory. It is designed for graduate students in a variety of fields (mathematics, statistics, economics, management, finance, computer science, and engineering) who require a working knowledge of probability theory that is mathematically precise, but without...
Oxford: Oxford University Press, 1995. - 172p.
During the last 15 years, there has been a systematic development of saddlepoint approximations. They give a highly accurate expression for the tail of a distribution, not only in the center but also for very small tail probabilities. Saddlepoint Approximations provides a complete account of this systematic development, giving...
New York: Springer, 2012. — 338 p. A new feature of this edition consists of photographs of eight masters in the contemporary development of probability theory. All of them appear in the body of the book, though the few references there merely serve to give a glimpse of their manifold contributions. It is hoped that these vivid pictures will inspire in the reader a feeling that...
New York: Hafner, 1965. - 232p. Introduction and summary Homogeneous Markov processes Conjugate transformation and asymptotic behaviour The passage problem for homogeneous skip-free processes Bounded processes and ergodic Green's functions Ergodic distributions, ruin problems, and extremes Processes with representation of finite dimension.
AMS, 2007. — 224 p. — ISBN: 0821842153, 9780821842157
This is a textbook for a one-semester graduate course in measure-theoretic probability theory, but with ample material to cover an ordinary year-long course at a more leisurely pace. Khoshnevisan's approach is to develop the ideas that are absolutely central to modern probability theory, and to showcase them by presenting...
The MIT Press, 2009. - 1208 pages.
Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning...
Chelsey Publishing company, New York, 1950. — 71 p. The purpose of this monography is to give an axiomatic foundation for the theory of probability. The author set himself the task of putting in their natural place, among the general notions of modern mathematics, the basic concepts of probability theory — concepts which until recently were considered to be quite perculiar....
Imperial College Press, 2000. — 190 p. — ISBN: 1860942245, 978-1860942242. A comprehensive and down-to-earth survey of the theory and practice of extreme value distributions — one of the most prominent success stories of modern applied probability and statistics. Originated by E.J. Gumbel in the early 1940s as a tool for predicting floods, extreme value distributions evolved...
2nd edition. — John Wiley & Sons, 2000. — 722 p.
Continuous Multivariate Distributions, Volume 1, Second Edition provides a remarkably comprehensive, self-contained resource for this critical statistical area. It covers all significant advances that have occurred in the field over the past quarter century in the theory, methodology, inferential procedures, computational and...
Zurich: E. Kowalski, 2021. — 201 p. The style of this book is a bit idiosyncratic. The results that interest us belong to number theory, but the emphasis in the proofs will be on the probabilistic aspects, and on the interaction between number theory and probability theory. In fact, we attempt to write the proofs so that they use as little arithmetic as possible, in order to...
Huntington: Krieger, 1980. — 273 p. In the fifteen years since the first edition of Studies in Subjective Probability appeared, the point of view represented by de Finetti, Ramsey, and Savage has become better known not only in philosophy and statistics where it originated, but in schools of business management, in economics and formal political science, and in psychology, both...
Providence: American Mathematical Society, 1999. — 113 p. This volume is based on classes in probability for advanced undergraduates held at the IAS/Park City Mathematics Institute (Utah). It is derived from both lectures (Chapters 1-10) and computer simulations (Chapters 11-13) that were held during the program. The material is coordinated so that some of the major computer...
Springer, 2006. — 504 p. Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and...
McGraw-Hill, 1965. — 153 p. Master probability with Schaum'sthe high-performance study guide. It will help you cut study time, develop problem-solving skills, and achieve your personal best on exams! Students love Schaum's Outlines because they produce results. Each year, hundreds of thousands of students improve their test scores and final grades with these indispensable study...
Cambridge: Cambridge University Press, 2021. — 715 p. Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and...
Springer, 1995. — 349 p. This book is designed to be an introduction to analysis with the proper mix of abstract theories and concrete problems. It starts with general measure theory, treats Borel and Radon measures (with particular attention paid to Lebesgue measure) and introduces the reader to Fourier analysis in Euclidean spaces with a treatment of Sobolev spaces,...
Dover Publications, 1987. — 88 p.
Remarkable selection of puzzlers, graded in difficulty, that illustrate both elementary and advanced aspects of probability. Selected for originality, general interest or because they demonstrate valuable techniques, the problems are ideal as a supplement to courses in probability or statistics, or as stimulating recreation for the...
Masson et Cie, 1964. — 205 p. La théorie des probabilités a pour objet l analyse mathématique de la 110tioll de hasard. En tant que discipline mathématique, elle ne peut se développer d'une manière rigoureuse que si elle se fonde sur un système de définitions et d'axiomes bien explicités.
Wiley-Interscience, 1994. — 777 p. — ISBN: 0471584959 As a continuation of Univariate Discrete Distributions, second edition, this book is the first of two volumes to discuss continuous univariate distributions. The second edition of Continuous Univariate Distributions differs from the first, published in 1970, in two important aspects: (1) Professor N. Balakrishnan has joined...
N.-Y.: Wiley, 1995. — 795 p.
As a continuation of Univariate Discrete Distributions, second edition, this book is the first of two volumes to discuss continuous univariate distributions. The second edition of Continuous Univariate Distributions differs from the first, published in 1970, in two important aspects: (1) Professor N. Balakrishnan has joined the two original authors...
Wiley, 1960. — 480 p. — ISBN: 0471668257
Mathematical probability theory is especially interesting to scientists and engineers. It introduces probability theory, showing how probability problems can be formulated mathematically to systematically attack routine methods. Topics include independence and dependence, probability laws and random variables. Over 500 exercises, an...
Boston: Birkhäuser, 1979. — 160 p. It would be difficult to overestimate the importance of stochastic independence in both the theoretical development and the practical appli cations of mathematical probability. The concept is grounded in the idea that one event does not "condition" another, in the sense that occurrence of one does not affect the likelihood of the occurrence...
Springer, 1993. — 538 p. This textbook is ideal for an undergraduate introduction to probability, with a calculus prerequisite. It is based on a course that the author has taught many times at Berkeley. The text's overall style is informal, but all results are stated precisely, and most are proved. Understanding is developed through intuitive explanations and examples. Graphs,...
Cambridge: Cambridge University Press, 2001. — 366 p. This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory The core of the book covers the basic topics of independence conditioning martingales convergence in distribution and Fourier transforms...
Birkhäuser Boston, 2005 — 460 p. Many probability books are written by mathematicians and have the built in bias that the reader is assumed to be a mathematician coming to the material for its beauty. This textbook is geared towards beginning graduate students from a variety of disciplines whose primary focus is not necessarily mathematics for its own sake. Instead, A...
9th ed. — London: Pearson, 2014. — 464 p.
A First Course in Probability, Ninth Edition, features clear and intuitive explanations of the mathematics of probability theory, outstanding problem sets, and a variety of diverse examples and applications. This book is ideal for an upper-level undergraduate or graduate level introduction to probability for math, science, engineering...
Burlington, Elsevier Inc., 2007. — 801 p.
Учебник по теории вероятностей. Не предполагает высокого уровня математической подготовки, однако затрагивает, помимо элементарной теории вероятностей, такие вопросы, как марковские цепи, теория восстановления, теория очередей, теория надёжности, стационарные процессы, статистическое моделирование. Для студентов нематематических...
New York: Academic Press, 2001. — 300 p. The role of probability in computer science has been growing for years and, in lieu of a tailored textbook, many courses have employed a variety of similar, but not entirely applicable, alternatives. To meet the needs of the computer science graduate student (and the advanced undergraduate), best-selling author Sheldon Ross has developed...
N.-Y.: Birkhauser, 2012. - 360p.
This second edition textbook offers a practical introduction to probability for undergraduates at all levels with different backgrounds and views towards applications. Calculus is a prerequisite for understanding the basic concepts, however the book is written with a sensitivity to students’ common difficulties with calculus that does not...
Wiley, 2011. — 622 p. A thorough introduction to the fundamentals of probability theory. This book offers a detailed explanation of the basic models and mathematical principles used in applying probability theory to practical problems. It gives the reader a solid foundation for formulating and solving many kinds of probability problems for deriving additional results that may be...
Philadelphia: SIAM, 1994. — 97 p. This update of the 1987 title of the same name is an examination of what is currently known about the probabilistic method, written by one of its principal developers. Based on the notes from Spencer's 1986 series of ten lectures, this new edition contains an additional lecture: The Janson Inequalities. These inequalities allow accurate...
Akadémiai Kiadó, Budapest, 1986. — 261 p. — ISBN: 963054151. На сайте выложен перевод на русский язык: /file/1232357/ This book aims to show how this rapidly progressing and widely used branch of knowledge has developed from paradoxes. It tries to show those exciting moments that preceded or followed the solution of some outstanding paradoxical problems which are rarely...
Providence, RI, 1992. -72 c., CRM Monograph Series, 1. American Mathematical Society A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. The book gives an introduction and survey on the field of free random variables, which was initiated by Voiculescu about 30 years ago. The book...
New York: W.H.Freeman, 2015. — 678 p. Unlike most probability textbooks, which are only truly accessible to mathematically-oriented students, Ward and Gundlach’s Introduction to Probability reaches out to a much wider introductory-level audience. Its conversational style, highly visual approach, practical examples, and step-by-step problem solving procedures help all kinds of...
Oxford University Press, 1993. — 224 p. — ISBN: 0-19-507068-2. A counterexample is any example or result that is the opposite of one's intuition or to commonly held beliefs. Counterexamples can have great educational value in illuminating complex topics that are difficult to explain in a rigidly logical, written presentation. For example, ideas in mathematical sciences that...
New York: Springer, 1996. — 442 p. For many practical problems, observations are not independent. In this book, limit behaviour of an important kind of dependent random variables, the so-called mixing random variables, is studied. Many profound results are given, which cover recent developments in this subject, such as basic properties of mixing variables, powerful probability...
Учебное пособие для астрономов и физиков. — М.: Наука, 1974. — 264 с.: ил. В книге изложены элементы теории вероятностей в том виде, в каком они должны в первую очередь находить применение в астрономии и физике. Приведено значительное число примеров.
Ленинград: Изд-во Ленинград. гос. ун-та, 1973. - 187 с.
Данное пособие является расширенным конспектом курса лекций, читаемого студентам факультета радиоэлектроники ЛПИ. Пособие состоит из трех частей: «Основы теории вероятностей», «Основы математической статистики», «Основы теории случайных процессов».
М.: Знание, 1983. — 192 с. — (Наука и прогресс).
Энергоэнтропика — универсальный метод исследования различных явлений с помощью энергоэнтропийиых балансов. В книге рассказано о важнейших понятиях и законах энергоэнтропики, рассмотрены возможности, принципы и результаты применения её в теории информации, в кибернетике, в биологии, в теории трудовых процессов, при изучении...
М.: Прогресс, 1967. — 367 с. В предлагаемый вниманию читателей сборник статей под общим названием «Закон, необходимость, вероятность» включены шесть различных по объему статей польских авторов, занимающихся указанными проблемами.
Учебное пособие. — М.: Владос, 2007. — 350 с. — (Учебник для вузов). — ISBN 978-5-691-01525-0. В пособии изложены основные идеи теории вероятностей, математической статистики, энтропии и информации. Каждая глава содержит перечень опорных понятий, теорем, умений, навыков, методов и алгоритмов. В начале параграфов даются краткие теоретические сведения, содержание которых...
Уфа: Изд-во УГНТУ, 1995. — 119 с. — ISBN: 5-230-18982-7 Излагается курс лекций, читаемых авторами в УГНТУ для студентов различных специальностей. Книга состоит из двух частей. Первая часть содержит собственно лекции по основным разделам теории вероятностей, изучаемым в технических университетах. Вторая часть представляет собой практикум по теории вероятностей, который может...
М.: Университет дружбы народов, 1990 - 229 с.
В основу пособия положен двухсеместровый курс лекций по "Теории вероятностей", читаемый автором студентам-математикам факультета УДН. Дается физическая интерпретация, приводится много примеров и рисунков. В тексте приводятся такие упражнения, служащие как для углубления и расширения теоретического материала, так и для самоконтроля...
Харьков: ХНАГХ, 2008. – 68 с. Для студентов 2 курса дневной формы обучения бакалавров направления 6.030504 – «Экономика предприятий», 6.030509 – «Учет и аудит». Случайные события Эмпирические и логические основы теории вероятностей. Основные определения Классическое определение вероятности Элементы комбинаторики Пространство событий Основные теоремы ТВ. Операции над событиями...
Пер. с лат. – М.: Наука. Гл. ред. физ.-мат. лит., 1986. – 176 с.
Якобу Бернулли (1654—1705) принадлежит первая асимптотическая теорема теории вероятностей – закон больших чисел. Настоящее издание факсимильного типа, приуроченное к Первому Всемирному Конгрессу Общества математической статистики и теории вероятностей им. Бернулли (Ташкент, 1986 г.), воспроизводит четвертую часть...
Л.: Государственное технико-теоретическое издательство. 1933. 45с.
Печатаемые ниже две статьи являются точным воспроизведением докладов, которые были обращены соответственно к пленарными собраниям двух математических Конгрессов (Всероссийский съезд в Москве 1927 г. и Международный конгресс в Цюрихе 1932 г.).
Этим указанием определяется уровень математических знаний читателя,...
М. -Л.: Государственное издательство, 1927. - 367 с.: ил.
Основоположения теории вероятностей
Главнейшие методы вычисления математических вероятностей
Закон больших чисел
Закон нормального распределения вероятностей
Основы теории кривых и поверхностей распределений
2-е изд., доп. — М.—Л.: Гостехтеориздат, 1934. — 412 с.: ил. Многостраничное изображение с текстовым слоем и закладками . Целью настоящей книги является изложение принципов и общих методов теории вероятностей, лежащих в основе ее многообразных приложений к физике, биологии, экономике и пр. Поскольку это было возможно без значительного ущерба для намеченной цели, автор старался...
Хабаровск: Тихоокеанский государственный университет (ТОГУ), 2017. — 232 с. Пособие соответствует федеральному государственному образовательному стандарту в области математики для технических специальностей и технических и экономических направлений бакалавриата и предназначено для студентов университета дневной, заочной и дистанционной форм обучения. Рассматриваются...
Пер. с англ. A.В. Прохорова, под ред. B.В. Сазонова. — М.: Наука. 1977. — 352 с. Книга посвящена общей теории слабой сходимости вероятностных мер в метрических пространствах. Развитые в последние пятнадцать лет методы изучения распределений (в частности, сходимости распределений) в функциональных пространствах оказались весьма плодотворными. Книга дает достаточно полное...
Учеб. Пособие. Воронеж. Изд-во:.ВГУ, 2010 год, - 21 с. Введение, Элементы теории вероятности, Классическое определение вероятности события, Статистическое определение теории вероятности, Теоремы сложения и умножения вероятностей, Формула полной вероятности, Формула Байерса, Задачник, Рекомендуемая литература
Москва-Ленинград: ГИТТЛ, 1950. - 368 с.
Эта книга является переработкой курса лекций по теории вероятностей, читанных автором в течение ряда лет студентам механико-математического и физического факультетов Саратовского государственного университета. Поставив перед собой целью составление руководства для первоначального, но достаточно серьёзного ознакомления с теорией...
М.: Наука, 1969. - 112 с.
Выдающийся французский математик Э. Борель (1871 — 1956) был исключительно разносторонен и продуктивен. Он оставил после себя огромное научное наследие, состоящее из многочисленных оригинальных работ, монографий и учебников, относящихся к различным областям математики и ее применениям к физике и другим разделам естествознания. Ему принадлежат также...
Перевод с французского Ю.И. Костицыной под редакцией В.А. Костицына. — М.-П.: Госиздат, 1923. — 227 с. — (Современные проблемы естествознания. Книга 8). Появление книги Бореля «Случай» на русском языке является более чем своевременным. Успехи физики и астрономии выдвинули статистический метод на первое место в современном естествознании. Значение статистического метода в биологии...
М.: Статистика, 1972. — 176 с. Книга "Вероятности, ошибки" - очередной выпуск серии "Библиотечка иностранных книг для экономистов и статистиков". Она принадлежит перу французских ученых Э. Бореля, Р. Дельтейля и Р. Юрона. Подробно рассмотрены следующие вопросы: основные положения теории вероятностей, теория повторных испытаний, геометрические вероятности, вероятность причин,...
Новосибирск: Наука, 1985. — 176 с. Сборник посвящен актуальным проблемам современной теории вероятностей и математической статистики, а именно: классическому принципу инвариантности Донскера — Прохорова и его обобщениям; предельным теоремам для различных схем суммирования независимых случайных величин и их применениям; уравнениям в частных производных со случайными...
М.: Физматлит, 2013. — 432 с. Книга посвящена главным образом изучению асимптотического поведения вероятностей редких событий (больших уклонений) для траекторий случайных блужданий. Случайными блужданиями мы называем последовательные суммы независимых случайных величин или векторов, а также процессы с независимыми приращениями. Предполагается, что эти случайные величины или...
Учебное пособие для вузов. — 2-е изд., перераб. и доп. — М.: Наука. Гл. ред. физ.-мат. лит. 1986. — 432 с. В основу положен курс лекций, читавшихся автором в течение ряда лет на математическом факультете Новосибирского университета (шестой семестр). Первое издание вышло в 1976 г. Второе издание значительно переработано и дополнено. Книга охватывает широкий круг вопросов,...
Третье издание (существенно переработанное и дополненное), — Москва: Эдиториал УРСС, 1999. — 472 с. Книга охватывает широкий круг вопросов, начиная с оснований теории вероятностей и заканчивая основными элементами теории случайных процессов. Настоящая книга написана на основе книги «Теория вероятностей», вышедшей в 1986 году в издательстве «Наука» (г. Москва). Многие разделы...
Монография. — Москва: Наука, 1985. — 370 с.
Книга посвящена систематическому изложению методов теории вероятностей в банаховых пространствах. Эта область, лежащая на стыке теории вероятностей, теории меры и функционального анализа, в последние 20—25 лет бурно развивается и превращается в самостоятельную ветвь математики. С одной стороны, она решает задачи теории вероятностей в...
Изд. 4-е стереотипное. — М.: Наука, 1969. — 576 с.: ил. Основные понятия теории вероятностей, основные теоремы вероятностей, повторение опытов, случайные величины и их законы распределения, системы случайных величин, нормальный закон распределения случайных величин, числовые характеристики функций, линеаризация функций, предельные теоремы теории вероятности, обработка опытов,...
7-е изд. — Москва: Высшая школа, 2001. — 575 с. Книга представляет собой один из наиболее известных учебников по теории вероятностей и предназначена для лиц, знакомых с высшей математикой и интересующихся техническими приложениями теории вероятностей. Она представляет также интерес для всех тех, кто применяет теорию вероятностей в своей практической деятельности. В книге...
10-е изд. — Москва: Высшая школа, 2006. — 575 с.: ил. — ISBN: 5-06-005688-0. Книга представляет собой один из наиболее известных учебников по теории вероятностей и предназначена для лиц, знакомых с высшей математикой и интересующихся техническими приложениями теории вероятностей. Она представляет также интерес для всех тех, кто применяет теорию вероятностей в своей практической...
М.: Наука, Главная редакция физико-математической литературы, 1969. — 366 с. — (Избранные главы высшей математики для инженеров и студентов втузов. Задачи и упражнения).
Настоящий сборник представляет собой систематизированную подборку задач и упражнений по теории вероятностей. Все задачи снабжены ответами, а большинство и решениями. В начале каждой главы приведена сводка...
М.: Высшая школа, 2000. — 480 с.
В книге дано систематическое изложение основ теории вероятностей под углом зрения их практических приложений по специальностям: кибернетика, прикладная математика, ЭВМ, автоматизированные системы управления, теория механизмов, радиотехника, теория надежности, транспорт, связь и т. д. Несмотря на разнообразие областей, к которым относятся...
3-е изд., перераб. и доп. — М.: Академия, 2003. — 464 с.
В книге дано систематическое изложение основ теории вероятностей под углом зрения их практических приложений по специальностям: кибернетика, прикладная математика, ЭВМ, автоматизированные системы управления, теория механизмов, радиотехника, теория надежности, транспорт, связь и т. д. Несмотря на разнообразие областей, к...
Учебник. – Днепр: Днепропетровский национальный университет им. Олеся Гончара, 2016. – 81 с. Учебник представляет собой систематическое изложение отдельных разделов теории вероятностей, таких как «Случайные величины», «Системы случайных величин» «Функции случайных величин». В учебнике приведены примеры решения типовых задач. Содержание некоторых задач имеет абстрактный...
К.: Вища школа, 1983. — 210 с. В учебном пособии изложены основные предельные теоремы для борелевских функций зависимых и независимых случайных величин. С помощью метода доказательства предельных теорем для сумм зависимых случайных величин, предложенного автором, получены значительно более глубокие результаты для предельных распределений сумм зависимых случайных величин, чем...
Книга содержит множество советов, наглядных примеров, помогающих открыть учащимся комбинаторику, теорию вероятностей и статистику. Пособие иллюстрировано и снабжено комментариями для преподавателя.
М.: Просвещение, 1979. — 176 c. OCR слой, оглавление. Книгу можно было бы озаглавить «Комбинаторика и вероятность от пяти до пятнадцати лет», она содержит множество советов и наглядных примеров, помогающих открыть учащимся комбинаторику, теорию вероятностей и статистику. Пособие снабжено комментариями для преподавателя. Весь этот обширный методический материал позволит...
Учебник. — М.—Л.: Гостехиздат, 1939. — 220 с.: ил. Многостраничное изображение с текстовым слоем и закладками . Допущено Всесоюзным комитетом по делам высшей школы при СНК СССР в качестве учебника для физико-математических факультетов государственных университетов. Оглавление . Основные понятия теории вероятностей. Приемы вычисления вероятностей. Асимптотические формулы....
М.: Высшая школа, 1959. — 143 с. Настоящее пособие предназначено для студентов, в первую очередь заочников, инженерно-экономических институтов и факультетов. Содержание и последовательность изложения соответствует программе по высшей математике для инженерно-экономических институтов и факультетов. Книга отражает опыт чтения автором курса «Введение в теорию вероятностей» в...
М.: Гостехиздат, 1950. — 388 с.: ил. 1-е издание классической книги. Допущено Министерством высшего образования СССР в качестве учебника для университетов. Понятие вероятности Достоверное, невозможное и случайное события. Различные подходы к определению вероятности. Поле событий. Классическое определение вероятности. Примеры. Геометрические вероятности. Статистическое...
Учебник. — Изд. 10-е., доп. — М.: Либроком, 2011. — 488 с. — (Классический университетский учебник.) Цель настоящей книги состоит в изложении основ теории вероятностей - математической науки, изучающей закономерности случайных явлений. Дается систематическое изложение, проиллюстрированное большим числом подробно рассмотренных примеров, в том числе и прикладного содержания....
Учебник. — Изд. 6-е, перераб. и доп. — М.: Наука, 1988. — 448 с. — ISBN: 5-02-013761-8. Дается систематическое изложение основ теории вероятностей, проиллюстрированное большим числом подробно рассмотренных примеров, в том числе и прикладного содержания. Серьезное внимание уделено рассмотрению вопросов методологического характера. Настоящее издание значительно отличается по...
Учебник. — Изд. 8-е, испр. и доп. — М.: Едиториал УРСС, 2005. — 448 с. — (Классический университетский учебник). — ISBN 5-354-01091-8. Дается систематическое изложение основ теории вероятностей, проиллюстрированное большим числом подробно рассмотренных примеров, в том числе и прикладного содержания. Серьезное внимание уделено рассмотрению вопросов методологического характера. В...
7-е изд., испр. — Пер. с англ. — М.: Наука, 1970. — 168 с.
Настоящая книжка двух советских математиков выдержала несколько изданий в нашей стране и переведена во многих странах: Франции, ГДР, США, Польше, Венгрии, Чехословакии, Румынии, Аргентине, Японии, Испании, КНР. Повсюду она встретила благожелательное отношение читателей. Эта книжка предъявляет минимальные требования к...
М.: Наука, 1982. — 160 с.
Книга в основной своей части предъявляет минимальные требования. Математических знаний, которые дает средняя школа, вполне достаточно для понимания всех ее частей. Изложение ведется на базе рассмотрения примеров практического содержания. Эти примеры излагаются так, чтобы читателю была ясна научная значимость вводимых понятий и выводимых правил.
М.: Гостехиздат, 1946. — 128 с.: ил. Многостраничное изображение с текстовым слоем и закладками . 1-е издание популярной книги двух советских математиков, выдержавшей несколько изданий в нашей стране и во многих других: Франции, ГДР, США, Польше, Венгрии, Чехословакии, Румынии, Аргентине, КНР. Книга последовательно и систематически, в доступной форме, знакомит читателя с...
К.: ВПЦ Київський університет, 2010. — 464 с. Викладено основи теорії ймовірностей. Теоретичний матеріал доповнено великою кількістю прикладів і задач прикладного характеру, що ілюструють застосування теорії. Для студентів університетів.
М.: Физматлит, 2021. — 176 с. — ISBN 978-5-9221-1922-1. В начале 1930-х гг. Андрей Николаевич Колмогоров разработал аналитические методы теории вероятностей. В последующие десятилетия его ближайшие ученики и коллеги А.М. Обухов, А.М. Яглом, А.С. Монин, Г.И. Баренблатт применили эту методику к исследованию реальных случайных процессов, в первую очередь турбулентности. В...
Учебник. — М.; Л.: Оборонгиз, 1939. — 428 с.: ил. В книге излагается математическая теория случайных событий и случайных величин и существующих между ними взаимоотношений. Изучению нормального закона ошибок (закона Гаусса) уделено особое внимание. Изложение материала систематизировано. Внесены элементы концентризма, что позволяет в ряде случаев, ограничиваясь рассмотрением...
Киев: Наукова думка, 2016. — 288 с. — ISBN: 978-966-00-1561-6. Монография посвящена исследованию физического феномена статистической устойчивости и сравнению двух теорий, описывающих его: теории вероятностей и теории гиперслучайных явлений. Для научных работников, инженеров и аспирантов, исследующих статистические закономерности реальных физических явлений, разрабатывающих и...
Киев: Национальная академия наук, 2007. – 184 c.
Монография посвящена теории гиперслучайных явлений – одной из новых ветвей теории вероятности и математической статистики. Изложены математические основы новой теории и методы моделирования физических объектов с помощью гиперслучайных моделей, учитывающих непредсказуемый характер изменения свойств объектов и статистических условий...
Киев: Наукова думка, 2011. — 319 с. — ISBN: 978-966-00-1093-2. Монография посвящена физико-математической теории гиперслучайных явлений, описывающей физические события, величины, процессы и поля в условиях нарушения статистической устойчивости. Для читателей с разным уровнем математической подготовки: тех, кто лишь поверхностно знаком с теорией вероятностей и хотел бы...
М.: Издательство МЭИ, 2005.- 80 с.
Пособие является конспектом лекций по основам теории вероятностей и содержит следующие разделы: случайные события, основные формулы теории вероятностей, одномерные случайные величины, многомерные случайные величины, закон больших чисел, центральная предельная теорема.
Учебное пособие. — Уфа: Уфимский государственный нефтяной технический университет (УГНТУ), 1999 — 148 с. — ISBN 5-7831-0253-9. Учебное пособие «Theory of probabilities» включает 5 разделов, охватывающих курс теории вероятностей в рамках учебной программы. Теоретические разделы снабжены большим количеством примеров, что значительно облегчает понимание излагаемого материала.
Учебно-методическое пособие. — Нижний Тагил: НТИ (филиал) УрФУ, 2017. — 295 с. — ISBN: 978-5-9544-0078-6 ISBN: 978-5-9544-0081-6 (ч.3) Учебно-методическое пособие для студентов специальностей 09.03.02 – Информационные системы и технологии, 09.03.03 – Прикладная информатика. Рассматриваются вопросы раздела «Теория вероятности» курса «Математика» для студентов всех специальностей...
М.: Изд-во МГУ, 1980. - 137 с.
Лекции для студентов факультетов психологии государственных университетов. Рассмотрены основные понятия теории вероятностей, такие, как операции над событиями, понятие вероятности, формула полной вероятности, формула Байеса. Подробно обсуждается понятие функции распределения вероятностей, математического ожидания случайной величины и оценки...
Москва: «Наука», 1983. - 160 с.
Учебник соответствует минимальному варнанту программы по теории вероятностей, допускаемому общей программой по высшей математике для инженерно-технических специальностей технических вузов.
Книга содержит материал по следующим темам: математические модели случайных явлений; независимость событий; последовательности ожиданий; случайные величины;...
М.: Наука. 1983. — 304 с.
Класс устойчивых распределений, в состав которого входят нормальное распределение и распределение Коши, является одним из важнейших в теории вероятностей. В последние годы начал интенсивно расширяться круг практических задач, в которых стали естественным образом появляться устойчивые распределения (такие математические модели можно найти в технике,...
М.: Наука, Гл. ред. физ.-мат. лит., 1986. — 416 с.
Содержание.
Элементы теории вероятностных метрик.
Вероятностные метрики.
Минимальные и протоминимальиые метрики.
Специальные случаи минимальных и протоминимальных метрик.
Идеальные метрики.
Соотношения между метриками.
Нормирование случайных последовательностей.
Общие проблемы нормировки.
О выборе постоянных при...
Учебное пособие. — Ульяновск: Ульяновский государственный технический университет (УлГТУ), 2018. — 130 с. — ISBN: 978-5-9795-1865-7. Учебно-методическое пособие «Краткий курс теории вероятностей» содержит разделы ФГОС ВО: элементы комбинаторики и теории вероятностей. Каждая глава содержит теорию и примеры, иллюстрирующие теорию; задачи с ответами; тест или текст контрольной...
М,: Мир, 1965. - 408 с. Автор знаком советскому читателю по переводу его работы «Статистическая независимость в теории вероятностей, анализе и теории чисел» (Ил, 1963). Его новая книга в основном посвящена одной из интереснейших задач физики: описать, как система из очень большого числа частиц (газ в сосуде) приходит в состояние равновесия, и объяснить, как необратимость этого...
М.: Наука, 1967. — 176 с. Обзор целого ряда матем. и физ. задач, решаемых методами теории вероятностей. Цикл лекций известного американского математика посвящён приложениям теории вероятностей к различным вопросам мат. анализа и классической стат. физики. Диапазон лекций достаточно широк: диф. уравнения в частных производных, теория потенциала, броуновское движение, теория...
Перевод Р.В. Амбарцумян. — Под ред. Ю.В. Прохоров. — М.: Наука, Главная редакция физико-математической литературы, 1972. — 192 с. Геометрические вероятности ― один из самых старых объектов исследования в теории вероятностей. На протяжении длительного времени в этой области наблюдался застой. Однако в последние десятилетия под влиянием приложений интерес к предмету значительно...
М.: Наука, 1966. — 588 с.: ил.
Эта книга в ее первоначальном виде была задумана перед тем, как разразилась вторая мировая война, и большая часть монографии была написана в течение первых лет этого тяжелого времени. Первый том вышел в свет в 1943 году, второй — в 1946 году. С тех пор статистическая теория так далеко шагнула вперед и настолько сильно расширилась область...
М.: Наука, 1982. — 392 с. В книге с единой точки зрения рассмотрены результаты теории точечных случайных процессов, которые являются естественной формализацией многих прикладных задач: счета частиц в физике, потоков требований, поступающих в системы массового обслуживания и др. Книга рассчитана на научных сотрудников, преподавателей, аспирантов и студентов старших курсов...
Учебник. — Киев: Выща школа, 1990. — 329 с. с ил. — ISBN: 5110018421. +OCR Излагаются основные разделы теории вероятностей, теории случайных процессов и математической статистики. Фундаментальные понятия (вероятность, случайная величина, математическое ожидание) приведены в терминах аксиоматического подхода А. Н. Колмогорова. Большое внимание уделяется разъяснению этих понятий...
М., 1974. — 120 с. — (Теория вероятностей и математическая статистика). Книга, изданная в 1933 г. на немецком языке и в 1936 г. на русском, несколько раз переиздавалась в английском переводе. Хотя значительная часть ее содержания включена в учебники, она сохраняет интерес для лиц, занимающихся обстоятельно теорией вероятностей. Основной текст переиздается лишь с небольшой...
М.: Наука, 1976. — 224 с. Дается систематическое изложение интенсивно развивающегося в последнее время направления в теории вероятностей, связанного со случайными размещениями. Исследуются асимптотические свойства законов распределения числа ячеек с заданным числом частиц в различных схемах размещения частиц по ячейкам. Для растущего числа частиц и ячеек дан весь спектр предельных...
Москва: Физматлит, 1963. — 436 с. — (Физико-математическая библиотека инженера). — ISBN: N/A +OCR, Интерактивное оглавление. Книга предназначена для лиц, интересующихся приложениями теории вероятностей к вопросам производства. Излагаемые в ней задачи подобраны и расположены так, что читатель в процессе их решения одновременно знакомится и с основами теории вероятностей. При...
М.: Знание, 1979. - 62 с. Крупнейший шведский математик Харальд Крамер вспоминает о развитии теории вероятностей и математической статистики за период с 1920 по 1970 годы. Большое внимание уделяется современным проблемам этого направления математики.
Свердловск: Издательство Уральского университета, 1991. - 260 с.
В основу учебного пособия положен семестровый курс лекций по теории вероятностей, читавшихся в последние годы на экономическом факультете Уральского университета. Пособие состоит из двух частей. В первой части излагаются основы теорий вероятностей, обсуждаются закон больших чисел и центральная предельная теорема....
М.: Высшая школа, 1984. - 264 с. В пособии систематически изложены основные понятия теории вероятностей на банаховом пространстве. Приведены подробные сведения о слабой сходимости последовательностей вполне конечных мер и их характеристических функциях. Центральной темой является теория безгранично делимых распределений. Некоторые темы ранее в учебной литературе не...
Учебное пособие. — Владивосток: Издательство Дальневосточного университета, 2002. — 116 с. Для студентов старших курсов. В основу учебного пособия положен полугодовой курс лекций, читаемый студентам Института физики и и информационных технологий ДВГУ. Излагаются разделы "Случайные события", "Случайные величины" и "Случайные векторы".
Перевод с англ. Н.Б. Левиной, С.А. Молчановой. — Под ред. А.Н. Ширяева. — Москва: Наука, Главная редакция физико-математической литературы, 1973. — 183 с. Университетские программы для студентов, специализирующихся по теории вероятностей, состоят, как правило, из следующих трех курсов: "Общего курса теории вероятностей", "Дополнительных глав теории вероятностей" и "Курса...
Отв. ред. Ю. В. Прохоров. — Л.: Наука, 1981. — 344 с. Настоящий сборник «Избранных трудов» содержит 15 работ по теории вероятностей крупнейшего советского математика академика Ю. В. Линника (1915—1972). Эти работы были выполнены Ю. В. Линником в 1947—1962 гг. и по существу посвящены целиком предельным теоремам теории вероятностей. Издание рассчитано на широкие круги математиков.
Л.: Изд-во Ленинградского университета, 1960. — 264 с. В книге излагаются вопросы, примыкающие к теории суммирования независимых случайных величин в аналитическом аспекте. После вспомогательных сведений из теории функций комплексного переменного подробно излагаются свойства характеристических функций случайных величин. Эти свойства применяются к построению достаточно обширной...
М.: Наука. Физматлит, 1972. — 480 с. — (Теория вероятностей и математическая статистика).
Основной задачей теории разложений случайных величин является исследование возможных представлений данной случайной величины в виде суммы независимых случайных величин. В книге излагаются важнейшие результаты этой теории и некоторые приложения. Подробно изучены аналитические свойства...
М.: Издательство иностранной литературы, 1962. — 720 с. Скан, OCR слой. Книга представляет собой обширный систематический курс современной теории вероятностей, написанный на высоком теоретическом уровне. На базе теории меры автор изучает случайные события, случайные величины и их последовательности, функции распределения и характеристические функции, предельные теоремы теории...
М.: Наука, Главная редакция физико-математической литературы, 1979. — 424 с. OCR слой, оглавление. Книга посвящена детальному изучению характеристических функции, которые являются одним из наиболее мощных средств для решения разнообразных вероятностных задач. В настоящее время известно исключительно много фактов, относящихся к характеристическим функциям, но они разбросаны по...
Учеб.-метод. пособие для студентов эконом. факультетов государственных университетов. — М.: Издательство Московского университета, 1987. — 61 с. В пособии кратко изложена высшая математика по теории вероятностей.
Ярославль, ЯрГУ. 2014. — 124 с. Учебное пособие. ISBN: 978-5-8397-1031-3 Книга написана на основе курсов лекций, читаемых авторами на факультете ИВТ. Обсуждение ключевых понятий дополняется большим количеством примеров и задач. Особое внимание уделяется задачам, связанным с испытаниями Бернулли, которым посвящена отдельная глава. Предназначена студентам обучающимся по...
СПб.: Изд-во СПбГТУ, 2002. 76 с.
Седьмой выпуск серии, состоящей из восьми выпусков опорного конспекта по математике, посвящен теории вероятностей. Он, как и все остальные, ориентирован на студентов технических и экономических направлений бакалавриата. Соответствует государственному образовательному стандарту и действующим программам. В выпуске последовательно вводится весь...
Учебное пособие. — Под ред. В.И. Антонова. — СПб.: Санкт-Петербургский политехнический университет Петра Великого (СПбПУ), 2008. — 384 с. — (Математика в политехническом университете). — ISBN: 978-5-7422-1865-4. Пособие представляет собой детализированный конспект лекций и сборник задач по теории вероятностей. В отличие от опорного конспекта здесь приведены доказательства...
СПбГПУ, 2002
Детализированный конспект. Пособие отвечает действующей программе для бакалавров. В отличие от представленного на сайте пособия того же наименования, содержит все страницы (исправленный вариант).
СПб.: СПбГТУ, 2002. - 96 с.
Соответствует государственному образовательному стандарту дисциплины «Математика». Состоит из четырех частей. Первая часть содержит перечень базисных понятий, задач, методов, знаний и умений, которыми должен овладеть студент, изучив теорию вероятностей. Вторая часть включает тридцать контрольных заданий по девять задач с подзадачами по тематике,...
Л.: Государственное издательство колхозной и совхозной литературы. 1933. 223с.
Теория моментов – раздел теории вероятностей, которая изучает характеристики распределения значений случайных величин.
М.: Вычислительный центр РАН, 1992. — 44 с. В работе предлагается математический аппарат интервального интеграла и интервальной меры, служащий основой интервальной теории вероятностей. Во второй части работы на базе предлагаемого аппарата строятся произведения интервальных вероятностных пространств и доказывается аналог закона больших чисел.
Итоги науки и техники. Современные проблемы математики. Фундаментальные направления. ВИНИТИ, 1991, том 83, 146 с. Рассматривается дифференциальная геометрия многообразий вероятностных мер, инвариантная относительно категории статистических решающих правил (марковских морфизмов), которая дает естественный язык как описания статистической модели — априорной информации о...
Пер. с англ. В.В. Фирсова. — Под. ред. И.М. Яглома. — М.: Мир, 1969. — 432 с. — (Современная математика). Эта книга, написанная группой известных американских математиков и педагогов, представляет собой элементарное введение в теорию вероятностей и статистику - разделы математики, которые находят сейчас все большее и большее применение в науке и в практической деятельности....
М.: "Мир", 1969. - 431 с. Автор книги известен своими работами по применению методов функционального анализа и теории меры к вопросам теории вероятностей. Мастерски написанная книга содержит компактное и в то же время полное изложение оснований теории вероятностей. Включено много полезных дополнений и упражнений. Книга может служить хорошим учебником для студентов и аспирантов,...
Ростов-на-Дону: Ростовское высшее командно-инженерное училище им. М.И. Неделина (РВКИУ), 1963. — 305 с. Сборник задач по теории вероятностей для курсантов военно-инженерного училища с ответами и указаниями к решениям. Включает около 500 задач. Автор ориентировался на учебник по теории вероятностей Е.С.Вентцель.
Новосибирск: Изд-во ин-та математика СО РАН, 1995. — 124 с.: ил.
В этой книге выдающегося американского математика предлагается принципиально новый подход как к изложению основ, так и продвинутых тем теории вероятностей. Автору удалось предположить очень простую и в то же время весьма мощную «частотную» версию теории, использующую идеи современного инфинитезимального...
М.: Ленанд, 2018. — 280 с. — (Школа Опойцева). Излагается стандартный курс теории вероятностей в авторской аранжировке. Помимо классических разделов теории вероятностей освещается ряд новых направлений, в частности, нелинейный закон больших чисел. Изложение сопровождается большим количеством примеров, задач и парадоксов, способствующих рельефному восприятию материала....
Монография. — М.: Мир, 1983. — 336 с. Монография индийского математика, посвященная изложению современных разделов теории вероятностей и теории меры. Материал тщательно подобран и проиллюстрирован многочисленными примерами. Для специалистов по теории вероятностей и теории меры, для студентов и аспирантов университетов. Предисловие. Вероятность на булевых алгебрах. Множества и...
М.: Наука, Главная редакция физико-математической литературы, 1987. — 320 с. Изложен ряд классических и новейших результатов теории суммирования независимых случайных величин — одной из наиболее важных и интенсивно разрабатываемых областей теории вероятностей. Особое внимание уделено теоремам о сходимости к безгранично делимым распределениям, центральной предельной теореме и ее...
М.: Физматлит, 1972. — 416 с. В книге содержится изложение ряда классических и новейших результатов теории суммирования независимых случайных величин - одной из наиболее важных и интенсивно разрабатываемых областей теории вероятностей. Большое внимание уделяется предельным теоремам о сходимости к безгранично делимым распределениям, центральной предельной теореме и ее...
Печинкин А.В., Тескин О.И., Цветкова Г.М., Бочаров П.П., Козлов Н.Е. Под ред. B.C. Зарубина, А.П. Крищенко. Учеб. для вузов. - 3-е изд., испр. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. - 456 с. - (Сер. Математика в техническом университете; Вып. XVI) ISBN 5-7038-2485-0 (Вып. XVI), ISBN 5-7038-2484-2. Несмотря на большое количество учебных руководств по теории вероятностей, в...
Учебное пособие. — Луганск: Изд-во ВНУ им. В.Даля, 2004. – 368 с. Содержится 545 решённых задач по основным разделам теории вероятностей: от простых задач до задач повышенной трудности. Во всех главах даются необходимые краткие теоретические сведения. Для ряда типовых задач в сборнике рассмотрены наиболее рациональные приёмы решения задач, что является необходимым для...
М.: Мир, 1977. — 128 с. — (Новое в зарубежной науке. Математика. Выпуск 7).
Данное издание является уникальной авторской попыткой сформировать систематическое введение в теорию случайных полей, что является одним из самых молодых веяний в современной теории вероятностей. Эта сфера настолько новая, что эффективно при строгих исследованиях в области равновесной классической...
2-е изд. — М.: Наука, 1973. — 488 с. — (Справочная математическая библиотека). Книга представляет собой обзор важнейших результатов, методов и направлений современной теории вероятностей. Основные понятия теории вероятностей, важнейшие теоретико-вероятностные модели, некоторые методы оптимального регулирования, линейная фильтрация, элементы теории передачи стационарных...
М.: Наука, 1967. — 496 с. — (Справочная математическая библиотека). Книга представляет собой обзор важнейших результатов, методов и направлений современной теории вероятностей. Основные понятия теории вероятностей, важнейшие теоретико-вероятностные модели, некоторые методы оптимального регулирования, линейная фильтрация, элементы теории передачи стационарных сообщений по...
Ижевск. Издательство: Журнал "Регулярная и хаотическая динамика". 1999 год. 283 страницы.
Книга является одной из частей курса лекций А. Пуанкаре. В ней рассмотрены как общие основы теории вероятностей, так и нетрадиционные вопросы, которые практически не содержатся ни в одном курсе. Рассмотрены различные приложения к физике, математике и механике. Книга полезна широкому кругу...
М.: Наука, 1968. — 368 с.: ил. В книге дано элементарное изложение основных понятий и методов теории вероятностей, необходимых для изучения технических приложений теории вероятностей, главным образом, в области теории процессов управления. В первой главе даются основные понятия теории вероятностей (событие, вероятность, условная вероятность), формулируются принципы сложения и...
М.: Наука, 1975. — 224 с. OCR слой, электронное оглавление. Книга может служить руководством по применению методов теории функций комплексного переменного к исследованию аналитических свойств характеристических функций вероятностных распределений и их компонент. Книга удачно дополняет известную монографию Ю. В. Линника (1960) и монографию, написанную совместно Ю. В. Линником и...
Учебное пособие, Уфа - 2001, 171 стр. Содержание. Предисловие. Начальное знакомство с теорией вероятностей. Элементы комбинаторики. Случай. Можно ли им управлять? Условные вероятности. Схема Бернулли. Случайная величина. Система случайных величин. Расширение теории и новые модели. Счетное множество элементарных событий. Анализ с помощью производящих функций. Смесь и блуждания.
Учебное пособие, Уфа - 2001, 160 стр.
Содержание.
Дальнейшее расширение теории.
несчетное множество элементарных событий.
Случайная величина с несчетным множеством возможных значений.
Система непрерывных случайных величин.
Примеры систем случайных величин и связных с ними задач.
Функции от непрерывных случайных аргументов.
Вероятностные модели некоторых внутриклеточных...
2-е изд. — М.: Физматлит, 1963. — 156 с. — (Избранные главы высшей математики для инженеров и студентов втузов). Книга является учебным пособием по курсу теории вероятностей, читаемому в ряде втузов, и соответствует утвержденной программе. Она заполняет имеющийся в нашей литературе пробел между университетскими курсами, слишком трудными для студентов втузов, и популярными...
Учебное пособие. — 3-е изд. — М.: Наука, Главная редакция физико-математической литературы, 1966. — 156 с. Книга является учебным пособием по курсу теории вероятностей, читаемому в ряде втузов, и соответствует утвержденной программе. Она заполняет имеющийся в нашей литературе пробел между университетскими курсами, слишком трудными для студентов втузов, и популярными книгами,...
5-е изд., перераб. — М.: Наука, 1976. — 240 с. В книге излагаются в доступной форме понятия вероятности случайного события, распределения вероятностей случайных величин различных типов, даются их статистические толкования. Подробно рассмотрены отдельные законы распределений, важные для приложений, приведены примеры таких приложений. Много внимания уделено числовым...
М.: Изд. Дом МиСИС, 2011. — 68 с. Учеб. пособие. ISBN: 978-5-87623-475-9 В данном учебном пособии приводится краткое изложение теоретического материала по первой части курса «Теория вероятностей», разобраны решения большого количества типовых задач, приведены контрольные вопросы по данному курсу, дано более 100 упражнений для самостоятельного решения с ответами, типовые...
Учебное пособие. — Новосибирск: Новосибирский гос. ун-т, 1984. — 96 с. Описывается интеграл Стилтьеса, который определяется как ограниченный линейный функционал на пространстве функций без сложных разрывов. Он применяется в геометрии (при измерении длин), в механике (при определении центров масс и моментов инерции) и в теории вероятностей (при вычислении математических ожиданий и...
М.: Наука, 1975. - 424с.
Книга посвящена элементарной комбинаторике, теории вероятностей и их приложениям. В ней систематически используется теоретико-множественный язык. Абстрактность этого языка компенсируется большим количеством подробно разобранных примеров. Задачи собраны в отдельные части, которые можно читать независимо. Там рассматриваются простые модели, связанные с...
Учебное пособие. — Новосибирск: Новосибирский государственный университет, 2005. — 158 с. — ISBN: 5-94356-274-5. Первая часть книги посвящена теории. В ней сначала подробно описываются конечные вероятностные пространства. Чтобы читать ее, достаточно уметь оперировать с конечными суммами и произведениями. Переход к счетным пространствам требует знакомства с рядами. В непрерывных...
Учебное пособие. — Новосибирск: Новосибирский государственный университет, 2005. — 190 с. — ISBN: 5-94356-274-5. Первая часть книги посвящена теории. В ней сначала подробно описываются конечные вероятностные пространства. Чтобы читать ее, достаточно уметь оперировать с конечными суммами и произведениями. Переход к счетным пространствам требует знакомства с рядами. В непрерывных...
Учебное пособие. — Новосибирск: Новосибирский государственный университет, 2005. — 200 с. В части 3 пособия подробно описываются элементы дифференциального и интегрального исчислений, которые использовались в части I. Объединен материал из пособий автора «Лекции по математическому анализу, 2.1» (Новосибирск, НГУ, 1973) и «Интегрирование равномерно измеримых, функций» (Новосибирск,...
Учеб. пособие. - М.: РУДН, 2011. — 36 с. ISBN: 978-5-209-04017-0 Рассмотрены основные понятия теории вероятностей: понятие события, алгебра событий, понятие вероятности события, операции над событиями, формулы для вычисления вероятностей. Пособие содержит большое количество задач, как разобранных в качестве образца, так и для самостоятельного решения. Предназначено для...
Підручник. – Харків: ХНАМГ, 2008. – 194 с. Підручник знайомить з основними поняттями й методами теорії ймовірностей. Наведені методи ілюструються типовими прикладами. Кожна тема закінчується практичним розділом для самостійного набуття навиків щодо використання розглянутих методів при розв’язанні стохастичних задач. Для студентів вищих навчальних закладів. Передмова. Вступ....
Пер. с англ. В.М. Максимова. — М.: Наука, 1983. — 358 с.: ил. Эта монография — первая из предлагаемой серии по теории вероятностей. Хотя название «Интегральная геометрия» может показаться несколько необычным в этом контексте, тем не менее, оно вполне подходит, ибо интегральная геометрия развилась из того, что раньше называлось «Геометрические вероятности».
М.: Гостехтеориздат, 1954. — 208 с.
Цепи Маркова и их различные обобщения, будучи одной из основных концепций теории вероятностей, находят все возрастающее применение в физике, геофизике, звездной астрономии и в технических вопросах. Их математической разработке и указанным приложениям посвящена очень большая литература, преимущественно специально журнального характера....
М.: Наука, 1978. — 288 с. В последние два десятилетия для решения комбинаторных задач в дискретной математике эффективно используются вероятностные методы. На этой основе сложилось определенное направление исследований, содержащее целый ряд интересных и законченных результатов. Основной целью данной монографии является изложение некоторых общих принципов применения...
Учебное пособие. — Москва: Московский государственный университет (МГУ) имени М.В. Ломоносова, 1985. — 128 с. В пособии излагаются первоначальные сведения из теории вероятностей. Введено понятие случайной величины, ее математического ожидания и дисперсии; рассмотрены последовательности независимых испытаний, цепи Маркова, случайные блуждания на решетке. Кроме того, исследована...
Учебное пособие. — Москва: Московский государственный университет (МГУ) имени М.В. Ломоносова, 1986. — 112 с. Во второй части пособия (часть первая вышла в 1985 г.) излагается усиленный закон больших чисел, слабая сходимость вероятностных распределений и другие вопросы теории вероятностей, а также элементы математической статистики. Для студентов-математиков...
Київ: Вища школа, 1976. — 385 с.
Збірник призначений для студентів механіко-математичних факультетів і факультетів прикладної математики. На цих факультетах останнім часом у зв'язку з переходом на нові навчальні плани значно розширено курс теорії ймовірностей. Нині до цього курсу включено і деякі елементи теорії випадкових процесів, яка широко застосовується, зокрема, в теорії...
Итоги науки и техники ВИНИТИ. Современные проблемы математики фундаментального направления, 1989, 279 стр.
Представлено 3 раздела: Вероятность. Основные понятия. Структура. Методы; Марковские процессы и вероятностные приложения в анализе; Вероятность. Прикладные аспекты
К.: Наукова думка, 1983. — 143 с. В сборник включены работы, касающиеся актуальных вопросов теории вероятностей. Рассматриваются вопросы сходимости произведений случайных операторов, изучается предельное поведение процессов с независимыми приращениями, ветвящихся процессов, исследуются асимптотические свойства ядер потенциалов случайных блужданий, свойства реализаций полей...
М.: Просвещение, 1983. — 207 с. Учебное пособие по программе физико-математических факультетов педагогических институтов содержит основные вопросы курса «Теория вероятностей», начиная с интуитивного подхода к понятиям случайного события и вероятности и кончая элементами математической статистики. Значительное место уделяется таким важнейшим фактам, как закон больших чисел и...
М.: МЦНМО, 2012. — 294 с. Предметом книги являются контрпримеры в традиционном понимании этого термина и примеры, раскрывающие разнообразные, стандартные и нестандартные, зачастую причудливые, свойства случайных величин и случайных процессов. Эти примеры и контрпримеры автор собирал на протяжении многих лет. Надо сказать, что построение примеров и контрпримеров, являясь далеко...
В 3-х книгах. — М.: Физматлит, 2004. — 384 с. — ISBN: 5-9221-0414-4. Книга является достаточно популярным и в то же время строго научным развернутым введением в теорию вероятностей, включающим в себя подробный анализ рассматриваемых проблем, широкие обобщения философского плана, отступления исторического характера. Книга имеет четко выраженный учебный характер; ее материал...
В 3-х книгах. — М.: Физматлит, 2004. — 360 с. — ISBN: 5-9221-0516-7. Книга демонстрирует принципиальную роль теории вероятностей в современном обществе, которое основывается на высокоразвитых информационных технологиях. Книга является достаточно популярным и в то же время строго научным развернутым введением в исследование операций и теорию информации. Она имеет четко...
В 3-х книгах. — М.: Физматлит, 2004. — 360 с. — ISBN: 5-9221-0529-9. Третья книга завершает трехтомник автора с общим названием «Закономерности окружающего мира» (первая книга: «Случайность, необходимость, вероятность», вторая книга: «Вероятность в современном обществе», третья книга: «Эволюция естественно-научного знания»). Здесь в популярной и систематизированной форме...
Учебное пособие. — Днепропетровск: Лизунов Пресс, 2016. — 196 c. — ISBN 9789662575613. Учебное пособие представляет собой элементарное введение в теорию марковских цепей - широко используемую в приложениях область современной теории вероятностей. Изложены основные понятия и факты теории марковских цепей. Теоретические положения проиллюстрированы многочисленными примерами. К...
М.: Московский государственный университет имени М.В. Ломоносова (МГУ), 1992. — 400 с. Рассматриваются основы теории вероятностей и понятия статистической проверки гипотез. Обсуждаются теория стационарных случайных процессов, теория марковских цепей и процессов. Для студентов физико-математических и физико-технических специальностей вузов.
Учебное пособие. — М.: Издательство Московского университета, 1972. — 231 с.: ил. Книга состоит из двух частей. Первая часть представляет собой краткий курс теории вероятностей с элементами математической статистики, предназначенный для студентов естественных специальностей университетов и пединститутов. Интенсивное использование аппарата математического анализа и линейной...
М.: Наука, 1982. — 288 с. Книга написана известным математиком П. Уиттлом, крупным специалистом в теории вероятностей, руководителем статистической лаборатории в Кэмбриджском университете. В ней на основе аксиоматизации оператора математического ожидания дается достаточно полное введение в теорию вероятностей и наряду с традиционными вопросами обсуждаются и ее приложения к...
М.: Военно-морское издательство, 1953. — 322 с.
Теория вероятностей есть наука, изучающая с количественной стороны закономерности случайных явлений. Курс теории вероятности написан с учетом особенностей необходимых для изучения теории стрельбы.
Основные положения и основные теоремы.
О вероятностях появления события при многократных испытаниях.
Исчисление вероятностей на...
Н.Новгород: Физматлит, 2012. — 608 с. — ISBN: 978-5-9221-1384-7 Качество: 600 dpi, OCR слой. Изложены фундаментальные и прикладные основы современной теории вероятностного моделирования реальных процессов и явлений. Основное внимание уделено проблеме математического задания и классификации реальных экспериментов, интуитивным понятиям и формализации допустимых, элементарных и...
3-е изд. — М.: Мир, 1984.—528 с, ил. OCR, Оглавление. Перевод первого тома известного курса теории вероятностей, написанного выдающимся американским математиком, выполнен заново с пересмотренного третьего издания. Предыдущие издания (М.: ИЛ, 1952; М.: Мир, 1964; М.: Мир, 1967) быстро разошлись. Первый том содержит изложение той части теории вероятностей, которая имеет дело с...
2-е изд. — М.: Мир, 1967. — 500 с. Скан, OCR слой, оглавление. Перевод второго, переработанного автором, издания содержит систематическое изложение той части теории вероятностей, которая имеет дело с дискретными множествами элементарных событий (конечными и счётными). Такой выбор материала позволил автору без использования сложного аналитического аппарата ввести читателя в круг...
3-е изд. — М.: Мир, 1984. — 738 с.: ил. OCR, Оглавление. Второй том всемирно известного двухтомного курса теории вероятностей, написанного выдающимся американским математиком. Классическое учебное руководство, оказавшее значительное влияние на развитие современной теории вероятностей и подготовку специалистов. Перевод заново выполнен со второго переработанного автором издания....
М.: Мир, 1967. — 752 с. Большое число примеров применений теории в физике, биологии и экономике. Вместе с первым томом он составляет прекрасное учебное руководство, в котором очень удачно сочетаются и принципиальные основы, и важнейшие приложения теории вероятностей. Автор книги — крупный специалист по теории вероятностей. Его учебник написан на высоком научном и методическом...
Москва: ОНТИ Государственное технико-теоретическое издательство, 1934. — 386 с. Курс теории вероятностей, отличающийся ориентацией на прикладные задачи в ущерб математической строгости. Может представлять интерес примерами, а также некоторыми деталями изложения материала.
Л.; М.: ОНТИ, 1935. — 148 с.: ил. Настоящая книга представляет собою краткое введение в круг основных понятий теории вероятностей и её приложений к статистике. Книга рассчитана на читателей, имеющих интерес или необходимость в ознакомлении с началами этой науки. Выводы основных формул даны с помощью методов высшей математики; однако, читатель, недостаточно владеющий основами...
М.: Мир, 1970. - 118 с.
Книга видного австралийского математика Э. Хеннана, известного советскому читателю по русскому переводу его книги "Анализ временных рядов", посвящена обсуждению связей между двумя кажущимися очень далекими разделами математики: теорией представлений групп и прикладной теорией вероятностей. С этой целью автор выбирает несколько теоретико-вероятностных тем...
М.: ОНТИ, НКТП, 1936. — 96 с. Предлагаемая читателю книга, написанная выдающимся отечественным математиком А.Я.Хинчиным (1894--1959), содержит описание методов так называемой "асимптотической" теории вероятностей. Автор исследует "предельные теоремы" теории вероятностей, которые, по его мнению, составляют наиболее существенную часть ее проблематики. Рекомендуется математикам и...
Монография. — М.: Государственное технико-теоретическое издательство (ГТТИ), 1932. — 84 с. В основу монографии положен специальный курс, читанный автором в 1926 г. в Московском университете. Основною задачею этого курса было пробудить чисто математический интерес к основным и наиболее общим проблемам теории вероятностей, показать заложенные в этих проблемах возможности и вместе...
М.: Издательство Физико-математической литературы, 2003. — 208 с. — ISBN: 5-94052-060-7. Рассмативаются подходы к аксиоматикам теории веоятностей, отличающимся от общепринятой в настоящее время аксиоматики А. Н. Колмогорова. Необходимость в этом возникла в связи с тудностями при использовании современной теории вероятностей для описания некоторых явлений в квантовой механике....
М.: Инфра-М, 2013. — 175 с. — ISBN: 978-5-16-005312-7 Учебное пособие написано в соответствии с Государственными образовательными стандартами высшего профессионального образования и содержит весь материал по курсу теории вероятностей. Для студентов вузов и лиц, использующих вероятностные методы при решении практических задач.
Москва; Ленинград: Издательство академии наук СССР, 1936. — 252 с. Лекции, читанные в 1849-80 гг. По записи А.М. Ляпунова. Изданы академиком А.Н. Крыловым. Предисловие Определённые интегралы Предварительные замечания и интегралы первой группы Интегралы второй группы Интегралы третьей группы Эйлеровы интегралы Интегралы четвёртой группы Формулы Фурье Собрание формул,...
Учебное пособие. — Серпухов: Серпуховское высшее военное командное училище, 1968. — 307 с. Настоящее пособие посвящено изложению основных положений теории вероятностей в применении к задачам надёжности и эксплуатации техники. Пособие предназначено для инженеров и научных сотрудников, занимающихся разработкой, производством, испытаниями и эксплуатацией техники. Основные понятия...
4-е изд. — М.: Бином. ЛЗ, 2014. — 455 с. — ISBN: 978-5-9963-1317-4. Популярный учебник по теории вероятностей и ее приложениям, написанный известными американскими математиками из Станфордского университета. Четвертое издание дополнено двумя новыми главами, посвященными финансовой математике. Для студентов, преподавателей, исследователей и практиков в экономике, психологии,...
Учебник, пер. с англ. — М.: БИНОМ. Лаборатория знаний, 2009. — 455 с.
Перевод 4-го издания популярного учебника по теории вероятностей и её приложениям, написанного известными американскими математиками из Стэнфордского университета. Четвёртое издание дополнено двумя новыми главами, посвящёнными финансовой математике.
Теория множеств.
Комбинаторика.
Условные вероятности,...
Изд. 5-е. — М.: Агар, 2000. — 256 с. — ISBN 5-89218-117-0. В основу книги положен материал полугодового курса лекций, читавшегося автором в течение ряда лет в московских вузах. Рассматриваемые в учебнике темы обычны для начального курса теории вероятностей. В конце глав приводятся задачи для практических занятий; имеются задачи, в которых предлагается моделировать различные...
3-е изд. исправленное. — М.: Наука, Главная редакция физико-математической литературы, 1987. — 241 с. В основу положен материал полугодового курса лекций, читавшегося автором в течение ряда лет в МИФИ. Рассматриваемые темы обычны для начального курса теории вероятностей. В конце глав приводятся задачи для практических занятий; имеются задачи, в которых требуется моделировать...
Підручник. — 2-ге вид., перероб. і допов. — К.: Вища школа, 1994. — 192 с.: іл. — ISBN 5-11-004271-3. Розлянуто основні розділи комбінаторики і теорії ймовірностей, а також найпростіші питання математичної статистики і теорії випадкових процесів. Наведено багато розібраних прикладів і задач, а також вправи для самостійного розвязування. Для студентів педагогічних навчальних...
Учебное пособие для университетов по специальности "Математика". — М.: Наука, 1980. — 575 с.: ил. Настоящее учебное пособие представляет расширенный трехсеместровый курс лекций по теории вероятностей. Первая часть посвящена элементарной теории вероятностей и предназначена для первичного ознакомления с предметом. Во второй части излагаются математические основания теории...
В 2-х книгах. — 3-е изд., перераб. и доп. — М.: Московский центр непрерывного математического образования (МЦНМО), 2004. — 520 с. — ISBN 5-94057-105-0. Настоящее издание (в двух книгах «Вероятность — 1» и «Вероятность — 2») представляет собой расширенный курс лекций по теории вероятностей. Первая книга «Вероятность — 1» содержит материал, относящийся к элементарной теории...
В 2-х книгах. — 3-е изд., перераб. и доп. — М.: Московский центр непрерывного математического образования (МЦНМО), 2004. — 408 с. — ISBN 5-94057-106-9. Настоящее издание (в двух книгах «Вероятность — 1» и «Вероятность — 2») представляет собой расширенный курс лекций по теории вероятностей. Вторая книга «Вероятность — 2» посвящена случайным процессам с дискретным временем...
Учебное пособие. — Москва: Советское радио, 1974. — 136 с. В книге дается краткое изложение основ теории вероятностей, описываются методы оценки достоверности и надежности выводов, делаемых на основе испытаний современных сложных технических комплексов и их элементов. Рассматриваются вопросы качества, надежности, эффективности и точности таких комплексов, а также влияния...
М.: Физматлит, 2016. — 137 c. (Интерактивное оглавление) Рассматриваются вопросы, связанные с принятием решений в условиях гибридной неопределенности. Систематизируется и развивается математический аппарат для моделирования гибридной неопределенности возможностно-вероятностного типа, ее агрегирования и обработки в задачах принятия решений и оптимизации. В основе излагаемого...
М.: Физматлит, 2005. — 256 с. В книге приводится ряд утверждений абелева и тауберова типов и примеры их применения в асимптотических задачах теории вероятностей. В частности, доказаны предельные теоремы для ветвящихся процессов, некоторых классов случайных подстановок, безгранично делимых случайных величин и случайных процессов рекордов. Для понимания книги достаточно знания...
Комментарии