Зарегистрироваться
Восстановить пароль
FAQ по входу

Вычислительная математика

Д
Используя схемы переменных направлений и дробных шагов, решить двумерную начально-краевую задачу для дифференциального уравнения параболического типа. В различные моменты времени вычислить погрешность численного решения путем сравнения результатов с приведенным в задании аналитическим решением. ( U(x, y, t) = sin(x) * sin(y) * sin(t) ) Исследовать зависимость погрешности от...
  • №1
  • 61,41 КБ
  • дата добавления неизвестна
  • описание отредактировано
К
Решить краевую задачу для дифференциального уравнения эллиптического типа. Аппроксимацию уравнения произвести с использованием центрально-разностной схемы. Для решения дискретного аналога применить следующие методы: метод простых итераций (метод Либмана), метод Зейделя, метод простых итераций с верхней релаксацией. Вычислить погрешность численного решения путем сравнения...
  • №2
  • 55,03 КБ
  • дата добавления неизвестна
  • описание отредактировано
Н
Используя явную схему крест и неявную схему, решить начально-краевую задачу для дифференциального уравнения гиперболического типа. Аппроксимацию второго начального условия произвести с первым и со вторым порядком. Осуществить реализацию трех вариантов аппроксимации граничных условий, содержащих производные: двухточечная аппроксимация с первым порядком, трехточечная...
  • №3
  • 348,99 КБ
  • дата добавления неизвестна
  • описание отредактировано
Используя явную и неявную конечно-разностные схемы, а также схему Кранка - Николсона, решить начально-краевую задачу для дифференциального уравнения параболического типа. Осуществить реализацию трех вариантов аппроксимации граничных условий, содержащих производные: двухточечная аппроксимация с первым порядком, трехточечная аппроксимация со вторым порядком, двухточечная...
  • №4
  • 100,02 КБ
  • дата добавления неизвестна
  • описание отредактировано
В этом разделе нет файлов.

Комментарии

в разделе Вычислительная математика #
ПРИГЛАШАЕМ ВАС ЗАОЧНО ПРИНЯТЬ УЧАСТИЕ В
IX МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ
ПО ЮРИДИЧЕСКИМ, ФИЛОЛОГИЧЕСКИМ, ПЕДАГОГИЧЕСКИМ И ФИЛОСОФСКИМ НАУКАМ НА ТЕМУ
"НАУЧНЫЕ ИССЛЕДОВАНИЯ-2011",
КОТОРАЯ СОСТОИТСЯ 22 АПРЕЛЯ 2011 ГОДА
РАБОЧИЙ ЯЗЫК: русский, украинский, английский, румынский, польский.
ФОРМАТ КОНФЕРЕНЦИИ: конференция проводится заочно с изданием печатного сборника материалов конференции и публикацией материалов на сайте.
СЕКЦИИ: юридические науки, филологические науки, педагогические науки, философские науки
ПОДСЕКЦИИ: уточняйте на нашем сайте
СРОКИ: документы для участия в конференции подаются в электронном и печатном виде с 23 марта по 20 апреля 2011 года включительно.
РЕГИСТРАЦИЯ: для участия в конференции необходимо в установленные сроки подать заявку об участии; доклад, соответствующий тематике секции; квитанцию/чек об оплате; для студентов ВУЗов – рецензию научного руководителя.
КОНТАКТЫ:
Сайт: http://www.winner.se-ua.net, http://science.ucoz.ua
On-line анкета участника: http://science.ucoz.ua/index/anketa/0-3
Подробности и образцы документов на нашем сайте: http://www.winner.se-ua.net
в разделе Вычислительная математика #
Предлагаю добавить в разделе "Вычислительная математика" подразделы
1. Метод конечных разностей
...
2. Вычислительные методы линейной алгебры
...
в разделе Вычислительная математика #
Предлагаю выделить в разделе "Вычислительная математика" подраздел "Метод конечных элементов и его применение".
Это направление сейчас очень сильно развивается. Думаю с его наполнением проблем не будет.
Перенос файлов в этот раздел можно сделать по названию файлов.
в разделе Вычислительная математика #
Вы можете составить список ссылок на файлы которые пойдут в этот раздел?
в разделе Вычислительная математика #
Да, смогу, так как имею определенный опыт по использованию метода конечных элементов.
Если Вас устроит, вышлю файл со списком ссылок и помещу его в раздел "Вычислительная математика".
в разделе Вычислительная математика #
Не надо высылать файлов. Пишите список в комментариях.
в разделе Вычислительная математика #
...
в разделе Вычислительная математика #
Ок, спасибо.
в разделе Вычислительная математика #
Просто вражений матеріалом, спасибі Вам!
в разделе Вычислительная математика #
Очень актуальная область, приветствуем новые материалы:)
В этом разделе нет комментариев.