Зарегистрироваться
Восстановить пароль
FAQ по входу

Вычислительная математика

L
УГАТУ, ФИРТ, ПО 2й курс, 2010г преподаватель: Гадилова Фируза Гарифьяновна Программа выполнена на Microsoft Visual C++ 2008 LU-разложение — представление матрицы A в виде LU, где L — нижняя треугольная матрица, а U — верхняя треугольная матрица. LU-разложение еще называют LU-факторизацией. LU-разложение используется для решения систем линейных уравнений и для обращения матриц.
  • №1
  • 1,00 МБ
  • дата добавления неизвестна
  • описание отредактировано
Д
Используя схемы переменных направлений и дробных шагов, решить двумерную начально-краевую задачу для дифференциального уравнения параболического типа. В различные моменты времени вычислить погрешность численного решения путем сравнения результатов с приведенным в задании аналитическим решением. ( U(x, y, t) = sin(x) * sin(y) * sin(t) ) Исследовать зависимость погрешности от...
  • №2
  • 61,41 КБ
  • дата добавления неизвестна
  • описание отредактировано
К
Решить краевую задачу для дифференциального уравнения эллиптического типа. Аппроксимацию уравнения произвести с использованием центрально-разностной схемы. Для решения дискретного аналога применить следующие методы: метод простых итераций (метод Либмана), метод Зейделя, метод простых итераций с верхней релаксацией. Вычислить погрешность численного решения путем сравнения...
  • №3
  • 55,03 КБ
  • дата добавления неизвестна
  • описание отредактировано
М
Лабораторная работа - Метод наименьших квадратов. УГАТУ, ФИРТ 2й курс, 2010г. преподаватель: Гадилова Фируза Гарифьяновна. Программа выполнена на Microsoft Visual C++ 2008.
  • №4
  • 1,00 МБ
  • дата добавления неизвестна
  • описание отредактировано
Н
Используя явную схему крест и неявную схему, решить начально-краевую задачу для дифференциального уравнения гиперболического типа. Аппроксимацию второго начального условия произвести с первым и со вторым порядком. Осуществить реализацию трех вариантов аппроксимации граничных условий, содержащих производные: двухточечная аппроксимация с первым порядком, трехточечная...
  • №5
  • 348,99 КБ
  • дата добавления неизвестна
  • описание отредактировано
Используя явную и неявную конечно-разностные схемы, а также схему Кранка - Николсона, решить начально-краевую задачу для дифференциального уравнения параболического типа. Осуществить реализацию трех вариантов аппроксимации граничных условий, содержащих производные: двухточечная аппроксимация с первым порядком, трехточечная аппроксимация со вторым порядком, двухточечная...
  • №6
  • 100,02 КБ
  • дата добавления неизвестна
  • описание отредактировано
Р
Решение обычного дифференциального уравнения первого порядка методом Эйлера. Имеется возможность ввода начального значения x и шага h. Производится построение графика приближенного решения функции.
  • №7
  • 398,78 КБ
  • дата добавления неизвестна
  • описание отредактировано
Решение СЛАУ методами Гаусса, Зейделя, простой итерацией, ортогонализацией. Исходники и exe на C++ ( Visual Studio 2008 ). ООП подход. Для систем размерности N на N+1, точность задается.
  • №8
  • 1005,61 КБ
  • дата добавления неизвестна
  • описание отредактировано
Лабораторная работа по дисциплине "вычислительная математика", СФУ ИКИТ, 2 курс, 2010 год, преподаватель Кириллова С. В. Цель и задача работы: пусть задана система линейных алгебраических уравнений вида Ax = b. Требуется составить программу решения этой системы уравнений методом Гаусса с выбором главного элемента и просчитать решение системы данного варианта. Работа выполнена в...
  • №9
  • 5,87 МБ
  • дата добавления неизвестна
  • описание отредактировано
Лабораторная работа по дисциплине "вычислительная математика", СФУ ИКИТ, 2 курс, 2010 год, преподаватель Кириллова С. В. Цель работы: пусть задана система линейных алгебраических уравнений вида Ax = b. Требуется составить программу решения этой системы уравнений методом Зейделя и просчитать решение системы данного варианта. Работа выполнена в MS Visual Studio 2008
  • №10
  • 9,98 МБ
  • дата добавления неизвестна
  • описание отредактировано
Ч
Томский государственный университет систем управления и радиоэлектроники Кафедра автоматизированных систем управления Вычислительная математика Лабораторные работы по дисциплине «Вычислительная математика» для студентов очной формы обучения специальности «Программное обеспечение вычислительной техники и автоматизированных систем» Лабораторная работа №1 «Решение уравнений с...
  • №11
  • 2,64 МБ
  • добавлен
  • описание отредактировано
Есть отчёт с постановкой задачи, описанием методов к численному решению, осуществлён численный просчёт "на ручках", выложен текст программы на C# (метод Эйлера, Рунге-Кутта 4-ого порядка, Эйлера-Коши), и много разных вариаций исходников, так что писать не надо, пользуйтесь!
  • №12
  • 1,35 МБ
  • дата добавления неизвестна
  • описание отредактировано
В этом разделе нет файлов.

Комментарии

в разделе Вычислительная математика #
ПРИГЛАШАЕМ ВАС ЗАОЧНО ПРИНЯТЬ УЧАСТИЕ В
IX МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ
ПО ЮРИДИЧЕСКИМ, ФИЛОЛОГИЧЕСКИМ, ПЕДАГОГИЧЕСКИМ И ФИЛОСОФСКИМ НАУКАМ НА ТЕМУ
"НАУЧНЫЕ ИССЛЕДОВАНИЯ-2011",
КОТОРАЯ СОСТОИТСЯ 22 АПРЕЛЯ 2011 ГОДА
РАБОЧИЙ ЯЗЫК: русский, украинский, английский, румынский, польский.
ФОРМАТ КОНФЕРЕНЦИИ: конференция проводится заочно с изданием печатного сборника материалов конференции и публикацией материалов на сайте.
СЕКЦИИ: юридические науки, филологические науки, педагогические науки, философские науки
ПОДСЕКЦИИ: уточняйте на нашем сайте
СРОКИ: документы для участия в конференции подаются в электронном и печатном виде с 23 марта по 20 апреля 2011 года включительно.
РЕГИСТРАЦИЯ: для участия в конференции необходимо в установленные сроки подать заявку об участии; доклад, соответствующий тематике секции; квитанцию/чек об оплате; для студентов ВУЗов – рецензию научного руководителя.
КОНТАКТЫ:
Сайт: http://www.winner.se-ua.net, http://science.ucoz.ua
On-line анкета участника: http://science.ucoz.ua/index/anketa/0-3
Подробности и образцы документов на нашем сайте: http://www.winner.se-ua.net
в разделе Вычислительная математика #
Предлагаю добавить в разделе "Вычислительная математика" подразделы
1. Метод конечных разностей
...
2. Вычислительные методы линейной алгебры
...
в разделе Вычислительная математика #
Предлагаю выделить в разделе "Вычислительная математика" подраздел "Метод конечных элементов и его применение".
Это направление сейчас очень сильно развивается. Думаю с его наполнением проблем не будет.
Перенос файлов в этот раздел можно сделать по названию файлов.
в разделе Вычислительная математика #
Вы можете составить список ссылок на файлы которые пойдут в этот раздел?
в разделе Вычислительная математика #
Да, смогу, так как имею определенный опыт по использованию метода конечных элементов.
Если Вас устроит, вышлю файл со списком ссылок и помещу его в раздел "Вычислительная математика".
в разделе Вычислительная математика #
Не надо высылать файлов. Пишите список в комментариях.
в разделе Вычислительная математика #
...
в разделе Вычислительная математика #
Ок, спасибо.
в разделе Вычислительная математика #
Просто вражений матеріалом, спасибі Вам!
в разделе Вычислительная математика #
Очень актуальная область, приветствуем новые материалы:)
В этом разделе нет комментариев.