На сборочный участок цеха предприятия через интервалы времени, распределенные экспоненциально со средним значением 10 мин, поступают партии, каждая из которых состоит из трех деталей. Половина всех поступающих деталей перед сборкой должна пройти предварительную обработку в течение 7 мин. На сборку подаются обработанная и необработанная детали. Процесс сборки занимает всего 6 мин....
Поэтому предлагаю разделять: - чисто математическое моделирование, когда разработан некий новый аппарат (на самом деле, таких работ достаточно мало), и, хотя работу в таком случае можно отнести в соответствующий раздел математики, но, чаще всего, лучше все-таки оставить в прикладном разделе. И уж совершенно не следует создавать разделы/подразделы “Математическое моделирование”. - прикладное моделирование – работу относить к той прикладной (предметной) области, в которой и для которой решена эта задача (а таких работ уже много). - отдельно выделить обучающие примеры моделирования (т.е. Как Решать Задачи) – лабы, РГР, курсовые, дипломы. Эти работы отнести в раздел общеобразовательных дисциплин, где уже имеются подобные подразделы (например, основы исследовательской деятельности), к которым можно отнести и моделирование (а это и есть исследовательская деятельность!) или там же создать свой, отдельный подраздел. Если в работе говорится о том, как решать задачи в какой-либо конкретной области знания (а во многих работах это так и есть), то ее следует отнести в эту предметную область.В ИТОГЕ. Предлагаю в этом разделе оставить только работы, связанные с информатикой. Остальные раскидать: в агроинженерию, социальные системы, энергетику, машиностроение, военное дело и т.д. – в тот раздел, к чему они относятся.Аналогичную процедуру (со временем) может быть стоит проделать и с разделом «Математические методы и компьютерное моделирование в физике». А какие в физике нематематические методы? Есть качественное, то бишь физическое, понимание процесса, помогающее составить модель, а любой расчет использует тот или иной раздел математики. А методы решения математических задач и должны быть в соответствующих разделах математики. Хотя, конечно, физики (именно как «люди-человеки») часто хорошо знают математику и так же хорошо умеют ее применять. Здесь работы раскидать по разделам физики. Выделение подразделов математических методов более уместно ИМХО в других науках: биологии, геологии и др. –– в тех, где математику начали применять сравнительно недавно.
Для пояснения своей точки зрения не обойтись без уточнений, хотя бы кратких, терминологии. Моделирование, в конечном счете, предполагает расчет в рамках некоторой математической модели. В основу такой модели могут быть положены либо самые новейшие достижения математики (например, фракталы, стохастические, Марковские процессы и т.д.), либо просто новые (например, диф. уравнения в частных производных или обыкновенные, теория упругости, теплопроводности и т.д.), либо совсем древние (например, что сейчас уже и в школе учат). РЕШЕНИЕ ЛЮБОЙ текстовой ЗАДАЧИ и есть МОДЕЛИРОВАНИЕ. Сейчас, к сожалению, моделирование стало просто модным словом (особенно «математическое моделирование»), которое заменило то, что раньше просто называлось расчетом, и которое часто применяется невпопад. Вот, к примеру, если я расплачиваюсь за покупки на базаре или уточняю, сколько купить обоев для ремонта, то я провожу «математическое моделирование» (ужас, что за слова!) или я считаю? Хотя «горячие головы» говорят именно так. Непосредственно к моделированию больше относятся физические модели (из эквивалентных материалов, оптические, центробежные, ЭГДА и др.), когда на модели измеряют интересующие параметры, но с массовой компьютеризацией такое моделирование почти исчезло (а зря!), и о нем уже практически не приходится говорить. Поэтому в нашем случае, если в работе составляются действительно НОВЫЕ системы УРАВНЕНИЙ как, например, это сделали в свое время (и впервые!) Мандельброт, Марков, Фурье и др. (что, конечно, идеальный случай!), т.е. другими словами разработана НОВАЯ ТЕОРИЯ, то в таком (или слегка ослабленном) случае работу можно отнести к математическому моделированию. Если в работе получено новое решение (в рамках уже известной модели-теории) какой-либо конкретной задачи, или проведено уточнение каких-то условий модели в какой-нибудь области знания, то работу следует отнести к прикладному (предметному) моделированию. Если в работе применяются уже известные модели (системы уравнений) и проводятся какие-то вариантные расчеты, то это, как раньше его иногда называли, численное моделирование. Например, к этому виду относятся расчеты/моделирование в машиностроении, строительстве, гидротехнике и т.д. Расчеты в рамках теории упругости, пластичности, теплопроводности и др. по известным готовым программам типа ANSYS, Лира и т.п. Это тоже прикладное моделирование. Если на компьютере, то компьютерное.
Комментарии
- чисто математическое моделирование, когда разработан некий новый аппарат (на самом деле, таких работ достаточно мало), и, хотя работу в таком случае можно отнести в соответствующий раздел математики, но, чаще всего, лучше все-таки оставить в прикладном разделе. И уж совершенно не следует создавать разделы/подразделы “Математическое моделирование”.
- прикладное моделирование – работу относить к той прикладной (предметной) области, в которой и для которой решена эта задача (а таких работ уже много).
- отдельно выделить обучающие примеры моделирования (т.е. Как Решать Задачи) – лабы, РГР, курсовые, дипломы. Эти работы отнести в раздел общеобразовательных дисциплин, где уже имеются подобные подразделы (например, основы исследовательской деятельности), к которым можно отнести и моделирование (а это и есть исследовательская деятельность!) или там же создать свой, отдельный подраздел. Если в работе говорится о том, как решать задачи в какой-либо конкретной области знания (а во многих работах это так и есть), то ее следует отнести в эту предметную область.В ИТОГЕ. Предлагаю в этом разделе оставить только работы, связанные с информатикой. Остальные раскидать: в агроинженерию, социальные системы, энергетику, машиностроение, военное дело и т.д. – в тот раздел, к чему они относятся.Аналогичную процедуру (со временем) может быть стоит проделать и с разделом «Математические методы и компьютерное моделирование в физике». А какие в физике нематематические методы? Есть качественное, то бишь физическое, понимание процесса, помогающее составить модель, а любой расчет использует тот или иной раздел математики. А методы решения математических задач и должны быть в соответствующих разделах математики. Хотя, конечно, физики (именно как «люди-человеки») часто хорошо знают математику и так же хорошо умеют ее применять. Здесь работы раскидать по разделам физики.
Выделение подразделов математических методов более уместно ИМХО в других науках: биологии, геологии и др. –– в тех, где математику начали применять сравнительно недавно.
Вы можете взяться за его пошаговое воплощение?
Но вот только приступить к этому, как говорится вплотную, смогу только где-то к концу месяца
Моделирование, в конечном счете, предполагает расчет в рамках некоторой математической модели. В основу такой модели могут быть положены либо самые новейшие достижения математики (например, фракталы, стохастические, Марковские процессы и т.д.), либо просто новые (например, диф. уравнения в частных производных или обыкновенные, теория упругости, теплопроводности и т.д.), либо совсем древние (например, что сейчас уже и в школе учат).
РЕШЕНИЕ ЛЮБОЙ текстовой ЗАДАЧИ и есть МОДЕЛИРОВАНИЕ. Сейчас, к сожалению, моделирование стало просто модным словом (особенно «математическое моделирование»), которое заменило то, что раньше просто называлось расчетом, и которое часто применяется невпопад. Вот, к примеру, если я расплачиваюсь за покупки на базаре или уточняю, сколько купить обоев для ремонта, то я провожу «математическое моделирование» (ужас, что за слова!) или я считаю? Хотя «горячие головы» говорят именно так. Непосредственно к моделированию больше относятся физические модели (из эквивалентных материалов, оптические, центробежные, ЭГДА и др.), когда на модели измеряют интересующие параметры, но с массовой компьютеризацией такое моделирование почти исчезло (а зря!), и о нем уже практически не приходится говорить.
Поэтому в нашем случае, если в работе составляются действительно НОВЫЕ системы УРАВНЕНИЙ как, например, это сделали в свое время (и впервые!) Мандельброт, Марков, Фурье и др. (что, конечно, идеальный случай!), т.е. другими словами разработана НОВАЯ ТЕОРИЯ, то в таком (или слегка ослабленном) случае работу можно отнести к математическому моделированию.
Если в работе получено новое решение (в рамках уже известной модели-теории) какой-либо конкретной задачи, или проведено уточнение каких-то условий модели в какой-нибудь области знания, то работу следует отнести к прикладному (предметному) моделированию.
Если в работе применяются уже известные модели (системы уравнений) и проводятся какие-то вариантные расчеты, то это, как раньше его иногда называли, численное моделирование. Например, к этому виду относятся расчеты/моделирование в машиностроении, строительстве, гидротехнике и т.д. Расчеты в рамках теории упругости, пластичности, теплопроводности и др. по известным готовым программам типа ANSYS, Лира и т.п. Это тоже прикладное моделирование. Если на компьютере, то компьютерное.