Apress, 2018. — 362 p. — ISBN: 1484235630. Code files only! Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in...
Packt Publishing, 2018. — 576 p. — ISBN: 978-1788621113. !Code files only Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms...
СПб.: Питер, 2020. — 192 с. — (Библиотека программиста). — ISBN 978-5-4461-1560-0. Все, что вам действительно нужно знать о машинном обучении, может уместиться на паре сотен страниц. Начнем с простой истины: машины не учатся. Типичное «машинное обучение» заключается в поиске математической формулы, которая при применении к набору входных данных (называемых «обучающими данными»)...
Автор, 2023. — 65 с. — ISBN 978-5-0060-1962-1. Краткий гайд для новичков по машинному и глубокому обучению с разбором кода. Здесь вы найдете необходимый минимум по предмету, истолкованный языком, понятным школьнику. Некоторые разделы написаны с помощью chatGPT. По прочтении вы избавитесь от страха перед технологией и освоите базовый инструментарий подготовки данных, их загрузке...
Комментарии