Зарегистрироваться
Восстановить пароль
FAQ по входу

Анализ больших данных (Big Data)

B
Technical University of Munich, 2016. — 197 p. This thesis addresses several challenges in the area of human-machine communication for applications in data mining and visualization. An Immersive Visual Data Mining (IVDM) system is presented, which allows the interactive display of images in a Cave Automatic Virtual Environment (CAVE). New (interactive) algorithms based on...
  • №1
  • 2,95 МБ
  • добавлен
  • описание отредактировано
University of Siegen, 2016. — 181 p. Any adaptive analysis of domain specific data demands fully generic, sophisticated, and customizable methods. A mathematical representation and modelling of domain specific requirements ensure achieving this goal. In talent analytics and job knowledge management era, a mathematical model should resolve person-job-fit and skill mismatch problems...
  • №2
  • 4,54 МБ
  • добавлен
  • описание отредактировано
C
University of Braunschweig – Institute of Technology, 2018. — 215 p. Weather forecasts serve as a fundamentally important input to the flight planning process and can carry an inherent measure of uncertainty. Such uncertainties thus lead to a trajectory being planned that does not represent the most cost-optimal option. Weather forecast generation relies on numerical simulations...
  • №3
  • 36,93 МБ
  • добавлен
  • описание отредактировано
H
Technical University of Munich, 2016. — 153 p. Efficient learning algorithms gain importance in the time of Big Data and decentralized data processing (e.g. Internet of Things). The thesis evaluates one class of such efficient algorithms: the incremental linear model trees. The algorithms are systematically compared on stationary Big Data and are improved in their usability by the...
  • №4
  • 8,95 МБ
  • добавлен
  • описание отредактировано
K
Technical University of Munich, 2016. — 180 p. High-dimensional data analysis becomes ubiquitous. Here, nonparametric models, i.e. sparse grid models, suffer exponential growth of complexity in high dimensions. To delay the onset of this curse, this thesis develops the learning algorithms that simultaneously optimise the model parameters and the structure to befit the problem. The...
  • №5
  • 8,90 МБ
  • добавлен
  • описание отредактировано
Technical University of Munich, 2018. — 186 p. Predicting the risk of complex diseases is a field of growing relevance in medicine and shows high potential of refinement and improvement by integrating new data types and larger data sets. In this thesis, we investigate and overcome issues on several challenges in this field by applying and developing statistical methodology for...
  • №6
  • 7,01 МБ
  • добавлен
  • описание отредактировано
R
Saarland University, 2016. — 167 p. In recent years, the database community has witnessed the advent and breakthrough of many new system designs like the famous Hadoop MapReduce or main memory databases like MonetDB, Hekaton, SAP Hana, and HyPer to solve the problems of “Big Data”. The system architectures in this generation of emerging systems often radically differ from...
  • №7
  • 2,84 МБ
  • добавлен
  • описание отредактировано
Щ
Диссертация на соискание учёной степени кандидата технических наук : 1.2.2. — Математическое моделирование численные методы и комплексы программ. — Липецкий государственный технический университет. — Липецк: 2021. — 200 с. Научный руководитель: кандидат технических наук, доцент, ФГБОУ ВО «Липецкий государственный технический университет», доцент кафедры прикладной математики...
  • №8
  • 1,77 МБ
  • добавлен
  • описание отредактировано
Қ
Философия докторы (PhD) дәрежесін алу үшін дайындалған диссертация. : 6D070300 – Ақпараттық жүйелер. — Қ.И. Сәтбаев атындағы Қазақ ұлттық техникалық зерттеу университеті. — Алматы: 2021. — 150 б. Ғылыми кеңесшілер: Өтепбергенов Ерболат Төлепбергенұлы – техника ғылымдарының докторы, профессор, ҚР БҒМ ҒК Ақпараттық және есептеуіш технологиялар институтының бас ғылыми қызметкері....
  • №9
  • 22,18 МБ
  • добавлен
  • описание отредактировано
В этом разделе нет файлов.

Комментарии

В этом разделе нет комментариев.