Издательство Morgan & Claypool, 2010, -176 pp.
MapReduce is a programming model for expressing distributed computations on massive amounts of data and an execution framework for large-scale data processing on clusters of commodity servers. It was originally developed by Google and built on well-known principles in parallel and distributed processing dating back several decades. MapReduce has since enjoyed widespread adoption via an open-source implementation called Hadoop, whose development was led by Yahoo (now an Apache project). Today, a vibrant software ecosystem has sprung up around Hadoop, with significant activity in both industry and academia.
This book is about scalable approaches to processing large amounts of text with MapReduce. Given this focus, it makes sense to start with the most basic question: Why? There are many answers to this question, but we focus on two. First, big data" is a fact of the world, and therefore an issue that real-world systems must grapple with. Second, across a wide range of text processing applications, more data translates into more effective algorithms, and thus it makes sense to take advantage of the plentiful amounts of data that surround us.
MapReduce Basics
MapReduce Algorithm Design
Inverted Indexing for Text Retrieval
Graph Algorithms
EM Algorithms for Text Processing
Closing Remarks