Зарегистрироваться
Восстановить пароль
FAQ по входу

Bolfarine H., Zacks S. Prediction Theory for Finite Populations

  • Файл формата pdf
  • размером 6,04 МБ
  • Добавлен пользователем
  • Описание отредактировано
Bolfarine H., Zacks S. Prediction Theory for Finite Populations
New York: Springer, 1992. — 217 p.
A large number of papers have appeared in the last twenty years on estimating and predicting characteristics of finite populations. This monograph is designed to present this modern theory in a systematic and consistent manner. The authors' approach is that of superpopulation models in which values of the population elements are considered as random variables having joint distributions. Throughout, the emphasis is on the analysis of data rather than on the design of samples. Topics covered include: optimal predictors for various superpopulation models, Bayes, minimax, and maximum likelihood predictors, classical and Bayesian prediction intervals, model robustness, and models with measurement errors. Each chapter contains numerous examples, and exercises which extend and illustrate the themes in the text. As a result, this book will be ideal for all those research workers seeking an up-to-date and well-referenced introduction to the subject.
Front Matter
Synopsis
Basic Ideas and Principles
Optimal Predictors of Population Quantities
Bayes and Minimax Predictors
Maximum—Likelihood Predictors
Classical and Bayesian Prediction Intervals
The Effects of Model Misspecification, Conditions for Robustness, and Bayesian Modeling
Models with Measurement Errors
Asymptotic Properties in Finite Populations
Design Characteristics of Predictors
Back Matter
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация