Зарегистрироваться
Восстановить пароль
FAQ по входу

Taback N. Design and Analysis of Experiments and Observational Studies Using R

  • Файл формата djvu
  • размером 2,77 МБ
  • Добавлен пользователем
  • Описание отредактировано
Taback N. Design and Analysis of Experiments and Observational Studies Using R
Boca Raton: CRC Press, 2022. — 293 p.
Introduction to Design and Analysis of Scientific Studies exposes undergraduate and graduate students to the foundations of classical experimental design and observational studies through a modern framework - The Rubin Causal Model. A causal inference framework is important in design, data collection and analysis since it provides a framework for investigators to readily evaluate study limitations and draw appropriate conclusions. R is used to implement designs and analyse the data collected.
Features
Classical experimental design with an emphasis on computation using tidyverse packages in R.
Applications of experimental design to clinical trials, A/B testing, and other modern examples.
Discussion of the link between classical experimental design and causal inference.
The role of randomization in experimental design and sampling in the big data era.
Exercises with solutions.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация