Leanpub, 2020. — 220 p.
The software industry is experiencing a boom in ML development and usage. This is not unlike previous software engineering booms in the early 2000s. The current boom manifests itself with a menagerie of constructs, abstractions, frameworks, and workflows. This multitude of integration challenges remind us of old and classical software problems. Some of the issues present in the ML software engineering practice are new. But the majority of the software engineering concerns have a historical smell. Going back to the early days of software engineering can help with today’s ML problems.
For us, ML engineers, it is time to stop reinventing the wheel, making the same old mistakes, and start using the decades of successful software engineering practices by replacing “Software” with “Machine Learning Software”.
This book can help with that.