Зарегистрироваться
Восстановить пароль
FAQ по входу

Смирнов В.И. Курс высшей математики. Том 4. Часть 1

  • Файл формата pdf
  • размером 9,72 МБ
Смирнов В.И. Курс высшей математики. Том 4. Часть 1
Изд. 6-е. перераб и дополненное. — М.: Наука, 1974. — 336 с.
Настоящее шестое издание четвертого тома существенно отличается от пятого издания. Это связано с тем, что четвертый том впервые печатается после изменения второго тома, в котором изложена теория интеграла Лебега и класс L2 функций, интегрируемых с квадратом по Лебегу. Это повлекло изменение изложения первой главы IV тома - теории интегральных уравнений. Кроме того, добавлена третья глава, содержащая изложение новых точек зрения на некоторые основные понятия математического анализа. Вторая глава (вариационное исчисление) несколько расширена. В третьей главе уже с новых точек зрения рассмотрена задача о минимуме квадратичного функционала.
В предыдущем издании четвертый том содержал более 800 страниц. В настоящем издании его пришлось разбить на две части, и настоящая книга является первой его частью.
Примеры составления интегральных уравнений. Интегральным уравнением называется всякое уравнение, содержащее искомую функцию под знаком интеграла. Пусть ищется решение дифференциального уравнения y=f(x,у), удовлетворяющее начальному условию у(х0)=у0. Мы видели раньше [11:51], что эта задача сводится к решению интегрального уравнения:
Совершенно так же задача интегрирования дифференциального уравнения порядка y=f(x,у) с начальными данными y(x)=y; у'(х)=у приводится к интегральному уравнению.
Интегральные уравнения.
Вариационное исчисление.
Дополнительные сведения по теории функциональных пространств L1 и L
Обобщенные производные. Проблема минимума квадратичного функционала.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация