Wiley, 2009. — 368 p. Bayesian Networks: An Introduction provides a self-contained introduction to the theory and applications of Bayesian networks, a topic of interest and importance for statisticians, computer scientists and those involved in modelling complex data sets. The material has been extensively tested in classroom teaching and assumes a basic knowledge of probability, statistics and mathematics. All notions are carefully explained and feature exercises throughout. Features include: An introduction to Dirichlet Distribution, Exponential Families and their applications. A detailed description of learning algorithms and Conditional Gaussian Distributions using Junction Tree… A discussion of Pearl's intervention calculus, with an introduction to the notion of see and do conditioning. All concepts are clearly defined and illustrated with examples and exercises. Solutions are provided online. This book will prove a valuable resource for postgraduate students of statistics, computer engineering, mathematics, data mining, artificial intelligence, and biology. Researchers and users of comparable modelling or statistical techniques such as neural networks will also find this book of interest.
Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
Third Edition. — Chapman & HALL/CRC. 2008. — 552 p. Broadening its scope to nonstatisticians, Bayesian Methods for Data Analysis, Third Edition provides an accessible introduction to the foundations and applications of Bayesian analysis. Along with a complete reorganization of the material, this edition concentrates more on hierarchical Bayesian modeling as implemented via...
Packt Publishing, 2017. — 450 p. — ISBN: 978-1-78829-575-8. True PDF Complex statistics in Machine Learning worry a lot of developers. Knowing statistics helps you build strong Machine Learning models that are optimized for a given problem statement. This book will teach you all it takes to perform complex statistical computations required for Machine Learning. You will gain...
Academic Press, 2009. — 864 p. — ISBN: 0123747651. Robert Nisbet, Pacific Capital Bank Corporation, Santa Barbara, CA, USA John Elder, Elder Research, Inc. and the University of Virginia, Charlottesville, USA Gary Miner, StatSoft, Inc. , Tulsa, OK, USA Description The Handbook of Statistical Analysis and Data Mining Applications is a comprehensive professional reference book...
John Wiley & Sons, 2008. — 430 p. — (Statistics in Practice). — ISBN: 0470060301, 978-0470060308. Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book...
InTech, 2010. — 442 p. Bayesian networks are graphical models that represent the probabilistic relationships among a large number of variables and perform probabilistic inference with those variables. They constitute a formal framework for the representation and communication of decisions resulting from reasoning under uncertainty. Bayesian networks, which were named after...
М.: O’Reilly Media, 2017. — 392 с. Машинное обучение стало неотъемлемой частью различных коммерческих и исследовательских проектов, однако эта область не является прерогативой больших компаний с мощными аналитическими командами. Даже если вы еще новичок в использовании Python, эта книга познакомит вас с практическими способами построения систем машинного обучения. При всем...