Зарегистрироваться
Восстановить пароль
FAQ по входу

Gallieri M. ℓasso-MPC - Predictive Control with ℓ1-Regularised Least Squares

  • Файл формата pdf
  • размером 6,71 МБ
  • Добавлен пользователем
  • Описание отредактировано
Gallieri M. ℓasso-MPC - Predictive Control with ℓ1-Regularised Least Squares
New York: Springer, 2016. — 209 p.
This thesis proposes a novel Model Predictive Control (MPC) strategy, which modifies the usual MPC cost function in order to achieve a desirable sparse actuation. It features an ℓ1-regularised least squares loss function, in which the control error variance competes with the sum of input channels magnitude (or slew rate) over the whole horizon length. While standard control techniques lead to continuous movements of all actuators, this approach enables a selected subset of actuators to be used, the others being brought into play in exceptional circumstances. The same approach can also be used to obtain asynchronous actuator interventions, so that control actions are only taken in response to large disturbances. This thesis presents a straightforward and systematic approach to achieving these practical properties, which are ignored by mainstream control theory.
Background
Principles of LASSO MPC
Version 1: \(\ell _1\) -Input Regularised Quadratic MPC
Version 2: LASSO MPC with Stabilising Terminal Cost
Design of LASSO MPC for Prioritised and Auxiliary Actuators
Robust Tracking with Soft Constraints
Ship Roll Reduction with Rudder and Fins
Concluding Remarks
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация