McGraw-Hill, 1959. — 233 p. — (Schaum's Outline series). — ISBN: 07-060228-X
Vector analysis, which had its beginnings in the middle of the 19th century, has in recent years become an essential part of the mathematical background required of engineers, physicists, mathematicians and other scientists. This requirement is far from accidental, for not only does vector analysis provide a concise notation for presenting equations arising from mathematical formulations of physical and geometrical problems but it is also a natural aid
in forming mental pictures of physical and geometrical ideas. In short, it might very well be considered a most rewarding language and mode of thought for the physical sciences.
This book is designed to be used either as a textbook for a formal course in vector analysis or as a very useful supplement to all current standard texts. It should also be of considerable value to those taking courses in physics, mechanics, electromagnetic theory, aerodynamics or any of the numerous other fields in which vector methods are employed.
Each chapter begins with a clear statement of pertinent definitions, principles and theorems together with illustrative and other descriptive material. This is followed by graded sets of solved and supplementary problems. The solved problems serve to illustrate and amplify the theory, bring into sharp focus those fine points without which the student continually feels himself on unsafe ground, and provide the repetition of basic principles so vital to effective teaching. Numerous proofs of theorems and derivations of formulas are included among the solved problems. The large number of supplementary problems with answers serve as a complete review of the material of each chapter.