Зарегистрироваться
Восстановить пароль
FAQ по входу

Liu C., Martin R. Inferential Models: Reasoning with Uncertainty

  • Файл формата pdf
  • размером 9,03 МБ
  • Добавлен пользователем
  • Описание отредактировано
Liu C., Martin R. Inferential Models: Reasoning with Uncertainty
Hoboken: CRC Press, 2015. - 274p.
A New Approach to Sound Statistical Reasoning
Inferential Models: Reasoning with Uncertainty introduces the authors’ recently developed approach to inference: the inferential model (IM) framework. This logical framework for exact probabilistic inference does not require the user to input prior information. The authors show how an IM produces meaningful prior-free probabilistic inference at a high level.
The book covers the foundational motivations for this new IM approach, the basic theory behind its calibration properties, a number of important applications, and new directions for research. It discusses alternative, meaningful probabilistic interpretations of some common inferential summaries, such as p-values. It also constructs posterior probabilistic inferential summaries without a prior and Bayes’ formula and offers insight on the interesting and challenging problems of conditional and marginal inference.
This book delves into statistical inference at a foundational level, addressing what the goals of statistical inference should be. It explores a new way of thinking compared to existing schools of thought on statistical inference and encourages you to think carefully about the correct approach to scientific inference.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация