London, Heidelberg, New York, Dordrecht: Springer, 2013. — XV, 182 p. 39 illus., 27 illus. in color. — ISBN: 978-1-4471-5093-0, ISBN: 978-1-4471-5094-7 (eBook), DOI 10.1007/978-1-4471-5094-7 — (Advances in Industrial Control).
Shows the reader how to adapt ideas of academic control theory to the difficulties imposed by the real world in which system knowledge is sometimes lacking Provides researchers with up-to-date and advanced tools of nonlinear control theory Presents several new approaches to control design for motion coordination of groups of UAVs
Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems’ inputs, states measurements, and restrictions on the interconnection topology between the aerial vehicles in the team are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book.
The material presented is primarily intended for researchers and industrial engineers from robotics, control engineering and aerospace communities. It also serves as a complementary reading for graduate students involved in research related to flying robotics, aerospace, control of under-actuated systems, and nonlinear control theory.
Content Level » Research
Keywords » Attitude Synchronization - Formation Control - Swarm Coordination - Under-actuated Systems - Unmanned Aerial Vehicles - Vertical Take-off and Landing
Related subjects » Communication Networks - Control Engineering - Mechanical Engineering -Signals & Communication
Contents