Зарегистрироваться
Восстановить пароль
FAQ по входу

Ristic B., Arulampalam S., Gordon N. Beyond the Kalman Filter. Particle Filters for Tracking Applications

  • Файл формата pdf
  • размером 10,41 МБ
  • Добавлен пользователем
  • Описание отредактировано
Ristic B., Arulampalam S., Gordon N. Beyond the Kalman Filter. Particle Filters for Tracking Applications
Artech House, 2004. — 318 p.
For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. This cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defence surveillance systems, and examines defence-related applications of particle filters to nonlinear and non-Gaussian problems. nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of manoeuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация